Instructions : 1. The question paper has five parts namely A, B, C, D and E.

Answer all the Parts.

2. Part A has 15 multiple choice questions, 5 fill in the blank questions.

3. Use the graph sheet for question on linear programming problem in Part E.

PART -A
I. Answer all the multiple choice questions : $15 \times 1=15$

1. The relation R in the set $\{1,2,3\}$ given by $\{(1,2),(2,1)\}$ is
a) reflexive
b) symmetric
c) transitive
d) equivalence relation
2. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=x^{4}$, then the function f is
a) one-one and onto
b) many-oneandonto
c) one-one but not onto
d) neither one-one nor onto
3. The principal value branch of $\cot ^{-1} x$ is
a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $[0, \pi]$
d) $(0, \pi)$
4. The number of all possible matrices of order 3×3 with each entry 0 or 1 is
a) 27
b) 18
c) 81
d) 512
5. Let A be a nonsigular matrix of order 3×3 and $|\operatorname{adj} A|=25$, thena possible value of $|\mathrm{A}|$ is
a) 625
b) 25
c) 5
d) 125
6. Which of the following x belongs to domain of the greatest integer function) $=[x], 0<\mathrm{x}<3$ is not differentiable
a) 2 and 3
b) 1 and 2
c) 0 and 2
d) 1 and 3
7. If $y=\log _{7} 2 x$, then $\frac{d y}{d x}$ is
1) $\frac{1}{x \log 7}$
b) $\frac{1}{7 \log x}$
c) $\frac{\log x}{7}$
d) $\frac{7}{\log x}$
8. The point of inflection of the function $\mathrm{y}=x^{3}$ is
a) $(2,8)$
b) $(1,1)$
c) $(0,0)$
d) $(-3,-27)$
9. $\int \sin 2 x d x$ is
a) $-\frac{\sin 2 x}{2}+c$
b) $-\frac{\cos 2 x}{2}+c$
c) $\frac{\cos 2 x}{2}+c$
d) $\frac{\sin 2 x}{2}+c$
10. $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$ is
a) $e^{-x}\left(\frac{1}{x}\right)+c$
b) $e^{-x}\left(\frac{1}{x^{2}}\right)+\mathrm{c}$
c) $e^{x}\left(\frac{1}{x}\right)+\mathrm{c}$
d) $e^{x}\left(\frac{1}{x^{2}}\right)+c$
11. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$, when $\tan \theta$ is equal to,
a) 1
b) $\frac{1}{\sqrt{3}}$
c) $\sqrt{3}$
d) 0
12. Unit vector in the direction of $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ is
a) $\frac{2 \hat{\imath}+3 \hat{\jmath}+\hat{k}}{14}$
b) $\frac{2 \hat{\imath}-3 \hat{\jmath}+\hat{k}}{\sqrt{14}}$
c) $\frac{2 \hat{\imath}+3 \hat{\jmath}+\hat{k}}{\sqrt{14}}$
d) $\frac{2 \hat{i}+3 \hat{j}-\hat{k}}{14}$
13. If the direction cosines $1, \mathrm{~m}, \mathrm{n}$ of a line are $0, \frac{1}{2}, \frac{\sqrt{3}}{2}$ then the angle made by the line with the positive direction of y - axis is
a) 60°
b) 30^{0}
c) 90^{0}
d) 45^{0}
14. In a Linear programming problem, the objective function is always
a) a cubic function
b) a quadratic function
c) a linear function
d) a constant function
15. If A and B are two non empty events such that $\mathrm{P}(A / B)=\mathrm{P}(B / A)$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \varnothing$ then
a) $\mathrm{A} \subset \mathrm{B}$ but $\mathrm{A} \neq \mathrm{B}$
b) $A=B$
c) $\mathrm{B} \subset \mathrm{A}$ but $\mathrm{A} \neq \mathrm{B}$
d) $P(A)=P(B)$
II. Fill in the blanks by choosing the appropriate answer from those given in the
bracket
$5 \times 1=5$

$$
\left(0, \quad 1, \quad 4, \quad \frac{1}{36}, \quad 7, \quad \frac{1}{6}\right)
$$

16. The value of $\sin \left[\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right]$ is
17. A square matrix A is a singular matrix if $|A|$ is
18. The order of the differential equation $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{I I I}\right)=0$ is
19. The lines $\frac{x-5}{k}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular, then k is
20. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is \qquad

PART -B

Answer any six questions

$6 \times 2=12$
21. Prove that $2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$
22. Find the equation of line joining (1, 2), (3, 6) using determinant method
23. Find $\frac{d y}{d x}$, if $y+\sin y=\cos x$
24. Find the rate of change of the area of a circle with respect to its radius r when $\mathrm{r}=3 \mathrm{~cm}$
25. Find the local minimum value of the function f given by $f(x)=3+|x|, x \in R$
26. Find $\int \frac{d x}{(x+1)(x+2)}$
27. Evaluate $\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$
28. Find the projection of vector $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ on the vector $\vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$
29. Find the angle between the pair of lines given by
$\vec{r}=3 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}+(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$ and $\vec{r}=5 \hat{\imath}-2 \hat{\jmath}+\mu(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})$
30. A fair die is rolled. Consider events $\mathrm{E}=\{1,3,5\}, \mathrm{F}=\{2,3\}$, find $\mathrm{P}(\mathrm{E} / \mathrm{F})$
31. If A and B two events such that $P(A)=\frac{1}{4}, P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{8}$, find $P(\operatorname{not} A$ and not $B)$

PART - C

Answer any six questions

$6 \times 3=18$
32. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by
$R=\{(a, b):|a-b|$ is even $\}$ is an equivalence relation
33. Write in the simplest form $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right), \quad x \neq 0$
34. Express $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as the sum of a symmetric anda skew symmetric matrix.
35. Differentiate $\sin ^{2} x$ with respect to $e^{\cos x}$
36. Differentiate $x^{\sin x}, \mathrm{x}>0$ with respect to x
37. Find the interval in which the function $f(x)=10-6 x-2 x^{2}$ is strictly increasing
38. Find $\int x \sin ^{-1} x d x$
39. Find the equation of curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$
40. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio $\mathrm{m}: \mathrm{n}$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$
41. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
42. A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn at random from the bag and it is found to be red. Find the probability that the ballis drawn from first bag?

PART - D

Answer any four questions
$4 \times 5=20$
43. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$.Show that f is invertible. Find the inverse of f.
44. If $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right] \quad B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$ and $C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$ then calculateAC, $B C$ and $(A+B) C$. Also verify $(A+B) C=A C+B C$
45. Solve the system of linear equations by matrix method

$$
2 x-3 y+5 z=11, \quad 3 x+2 y-4 z=-5, \quad x+y-2 z=-3
$$

46. If $y=3 \cos (\log x)+4 \sin (\log x)$, show that $x^{2} y_{2}+x y_{1}+y=0$
47. Find the integral of $\frac{1}{x^{2}-a^{2}}$ with respect to x and hence evaluate $\int \frac{d x}{x^{2}-16}$
48. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ using integration.
49. Find the general solution of the differential equation
$x \frac{d y}{d x}+2 y=x^{2} \log x,(x \neq 0)$
50. Derive the equation of a line in space through a given point and parallel to a vector both in the vector and Cartesian form

PART - E

Answer the following questions

51. P.T. $\int_{-a}^{a} f(x) d x= \begin{cases}2 \int_{0}^{a} f(x) d x, & \text { if } f(x) \text { is an even function } \\ 0 & \text { if } f(x) \text { is an odd function }\end{cases}$ and hence evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$

OR

Solve the following linear programming problem graphically Minimise $Z=200 x+500 y$,
subject to the constraints : $x+2 y \geq 10, \quad 3 x+4 y \leq 24, \quad x \geq 0, \quad y \geq 0$
52. Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-4 A+I=\mathbf{O}$, where I is 2×2 identity matrix and \mathbf{O} is 2×2 zero matrix.

Using this equation, find A^{-1}

OR

Find the value of k so that the function $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{k \cos x}{\pi-2 x} & \text { if } \mathrm{x} \neq \frac{\pi}{2} \\ 3 & \text { if } \mathrm{x}=\frac{\pi}{2}\end{cases}$ is continuous at $x=\frac{\pi}{2}$

