SUBJECT : MATHEMATICS (35)

TIME : 3 Hours 15 Minutes [Total questions : 52] Max. Marks: 80

Instructions : 1. The question paper has five parts namely A, B, C, D and E. Answer all the Parts.

- 2. Part A has 15 multiple choice questions, 5 fill in the blank questions.
- 3. Use the graph sheet for question on linear programming problem in Part E.

PART -A

I. Answer all the multiple choice questions : $15 \ge 1 = 15$ **1.** The relation R in the set $\{1,2,3\}$ given by $\{(1,2),(2,1)\}$ is a) reflexive b) symmetric d) equivalence relation c) transitive **2.** If $f : R \to R$ be defined as $f(x) = x^4$, then the function f is a) one-one and onto b) many-oneandonto c) one-one but not onto d) neither one-one nor onto **3.** The principal value branch of $\cot^{-1} x$ is a) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ b) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ c) $[0, \pi]$ d) (0, π) **4.** The number of all possible matrices of order 3 x 3 with each entry 0 or 1 is a) 27 b) 18 c) 81 d) 512 **5.** Let A be a nonsigular matrix of order 3×3 and ||| adj A| = 25, then a possible value of |A| is a) 625 b) 25 d) 125 c) 5 6. Which of the following x belongs to domain of the greatest integer function) = [x], 0 < x < 3 is not differentiable b) 1 and 2 a) 2 and 3 c) 0 and 2 d) 1 and 3 7. If $y = \log_7 2x$, then $\frac{dy}{dx}$ is 1) $\frac{1}{x \log 7}$ b) $\frac{1}{7 \log x}$ c) $\frac{\log x}{7}$ d) $\frac{7}{loax}$ **8.** The point of inflection of the function $y = x^3$ is d) (-3, -27) c) (0,0) a) (2,8) b) (1, 1) **9.** $\int sin 2x \, dx$ is a) $-\frac{\sin 2x}{2}$ + c b) $-\frac{\cos 2x}{2}$ + c d) $\frac{\sin 2x}{2}$ + c c) $\frac{\cos 2x}{2}$ + c **10.** $\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$ is a) $e^{-x}\left(\frac{1}{x}\right) + c$ b) $e^{-x}\left(\frac{1}{x^2}\right) + c$ c) $e^{x}\left(\frac{1}{x}\right) + c$ d) $e^{x}\left(\frac{1}{x^2}\right) + c$

f(x

11. If θ is the angle between any two vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} = |\vec{a} \times \vec{b}|$, when $tan\theta$ is equal to,

b) $\frac{1}{\sqrt{2}}$ c) √3 a) 1 **12.** Unit vector in the direction of $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ is a) $\frac{2\hat{i}+3\hat{j}+\hat{k}}{14}$ b) $\frac{2\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{14}}$ c) $\frac{2\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{14}}$ d) $\frac{2\hat{i} + 3\hat{j} - \hat{k}}{14}$

13. If the direction cosines l,m,n of a line are 0, $\frac{1}{2}$, $\frac{\sqrt{3}}{2}$ then the angle made by the line with the positive direction of y – axis is a) 60° b) 30⁰ c) 90° d) 45⁰

- 14. In a Linear programming problem , the objective function is always a) a cubic function b) a quadratic function c) a linear function d) a constant function
- **15.** If A and B are two non empty events such that P(A/B) = P(B/A) and $P(A \cap B) \neq \emptyset$ then
 - a) $A \subset B$ but $A \neq B$ b) A = B
 - c) $B \subset A$ but $A \neq B$ d) P(A) = P(B)
- II. Fill in the blanks by choosing the appropriate answer from those given in the bracket $5 \ge 1 = 5$

$$\begin{pmatrix} 0, & 1, & 4, & \frac{1}{36}, & 7, & \frac{1}{6} \end{pmatrix}$$

16. The value of $\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$ is ______ **17.** A square matrix A is a singular matrix if |A| is ______

- **18.** The order of the differential equation $\frac{d^4y}{dx^4}$ + sin $(y^{III}) = 0$ is ______
- **19.** The lines $\frac{x-5}{k} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular, then k is ______
- 20. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is _____

PART -B

Answer any six questions

- **21.** Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$
- **22.** Find the equation of line joining (1, 2), (3, 6) using determinant method
- **23.** Find $\frac{dy}{dx}$, if $y + \sin y = \cos x$
- **24.** Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm
- **25.** Find the local minimum value of the function f given by f(x) = 3 + |x|, $x \in \mathbb{R}$ **26.** Find $\int \frac{dx}{(x+1)(x+2)}$

27. Evaluate
$$\int_{0}^{\frac{\pi}{2}} \left(\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx$$

28. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$

6 x 2 =12

d) 0

- **29.** Find the angle between the pair of lines given by
 - $\vec{r} = 3\hat{\imath} + 2\hat{\jmath} 4\hat{k} + (\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) \text{ and } \vec{r} = 5\hat{\imath} 2\hat{\jmath} + \mu (3\hat{\imath} + 2\hat{\jmath} + 6\hat{k})$
- **30.** A fair die is rolled. Consider events $E = \{1, 3, 5\}$, $F = \{2, 3\}$, find P(E/F)
- **31.** If A and B two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{8}$, find P (not A and not B)

PART – C

Answer any six questions

- 32. Show that the relation R in the set A = {1,2,3,4,5} given by R = {(a, b): |a b| is even } is an equivalence relation
- **33.** Write in the simplest form $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$, $x \neq 0$
- **34.** Express A = $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
- **35.** Differentiate sin^2x with respect to e^{cosx}
- **36.** Differentiate x^{sinx} , x > 0 with respect to x
- **37.** Find the interval in which the function $f(x) = 10 6x 2x^2$ is strictly increasing
- **38.** Find $\int x \sin^{-1} x \, dx$
- **39.** Find the equation of curve passing through the point (-2, 3), given that the slope of the tangent to the curve at any point (x, y) is $\frac{2x}{y^2}$
- **40.** Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio m: n is $\frac{m \vec{b} + n\vec{a}}{m + n}$
- **41.** Find a unit vector perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$
- **42.** A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn at random from the bag and it is found to be red .Find the probability that the ballis drawn from first bag ?

PART – D

Answer any four questions

- **43.** Let $f: N \rightarrow Y$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible. Find the inverse of f.
- **44.** If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix} B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ then calculateAC, BC and (A + B)C. Also verify (A + B)C = AC + BC
- **45.** Solve the system of linear equations by matrix method 2x 3y + 5z = 11, 3x + 2y 4z = -5, x + y 2z = -3
- **46.** If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$
- **47.** Find the integral of $\frac{1}{x^2-a^2}$ with respect to x and hence evaluate $\int \frac{dx}{x^2-16}$
- **48.** Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ using integration.

6 x 3 =18

 $4 \ge 5 = 20$

- **49.** Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$, (x $\neq 0$)
- **50.** Derive the equation of a line in space through a given point and parallel to a vector both in the vector and Cartesian form

PART – E

Answer the following questions

51. P.T.
$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx , & \text{if } f(x) \text{ is an even function} \\ 0 & \text{if } f(x) \text{ is an odd function} \end{cases}$$

and hence evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{7} x dx$

Solve the following linear programming problem graphically Minimise Z = 200x + 500y, subject to the constraints : $x + 2y \ge 10$, $3x + 4y \le 24$, $x \ge 0$, $y \ge 0$

52. Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = \mathbf{O}$, where I is $2 \ge 2$ identity matrix and **O** is $2 \ge 2$ zero matrix.

Using this equation, find A^{-1} .

OR

Find the value of k so that the function $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$

******@******

4