GOVERNMENT OF KARNATAKA
 DEPARTMENT OF PRE-UNIVERSITY EDUCATION II YEAR PUC ANNUAL EXAMINATION - APRIL/ MAY 2022 SCHEME OF VALUATION

Subject code: 31(NS)
Subject: STATISTICS

Q. NO.	I. SECTION - A	MARKS
1.	Registration method or Census method	1
2.	Cohort is a group of individuals who are born at the same time and who experience the same mortality conditions.	1
3.	Base year prices (p_{0})	1
4.	$\operatorname{CPI}(\mathrm{AEM})=\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{0}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{0}} \times 100$	1
5.	Graphical representation of time series data.	1
6.	Increase in the price of gold in the past many years. (Any one)	1
7.	Variance $=0.16$	1
8.	Mean $=9$	1
9.	Mean $=0$	1
10.	A statistical constant of the population.	1
11.	If an interval is proposed as an estimate of the unknown parameter.	1
12.	The probability of rejecting null hypothesis, when it is not true.	1
13.	$\overline{\mathrm{X}}$-chart or R-chart	1
14.	$\Sigma \mathrm{a}_{\mathrm{i}}=\Sigma \mathrm{b}_{\mathrm{j}}$	1
15.	The strategy of a player is the pre-determined rule by which a player determines his course of action.	1

Q.NO.	II. SECTION - B	MARKS
16.	(i) They are used in medical research. (ii) They are used in actuarial science. (Any two)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17.	$\begin{aligned} & \mathrm{e}_{1}=\frac{\mathrm{T}_{1}}{\mathrm{l}_{1}} \\ & \mathrm{e}_{1}=\mathbf{6 4} \text { years } \end{aligned}$	1 1
18.	(i) It satisfies both TRT and FRT. (ii) It is free of bias. (Any two)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
19.	$\begin{aligned} \mathrm{Q}_{01}(\mathrm{P}) & =\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{1}}{\Sigma \mathrm{p}_{1} \mathrm{q}_{0}} \times 100 \\ & =\mathbf{9 8 . 1 1 3} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20.	$\begin{aligned} \mathrm{CLI}(\mathrm{FBM}) & =\frac{\Sigma \mathrm{WP}}{\Sigma \mathrm{~W}} \\ & =\mathbf{1 0 5} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
21.	(i) Graphical method. (ii) Semi-averages method. (Any two)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
22.	a) Seasonal variation. b) Irregular variation.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
23.	(i) The value of the independent variable should have a common difference. (ii) The value of X , for which the value of Y is to be interpolated must be one of the values of X .	1 1
24.	(i) Mean = p (ii) Variance $=\mathrm{pq}$ (Any two)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
25.	$\begin{aligned} & \text { Median }=\mathbf{0} \\ & \text { S.D. }=\mathbf{1 . 1 1 8} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
26.	$\begin{aligned} \text { S.E. }\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{x}}_{2}\right) & =\sqrt{\frac{\sigma_{1}^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{2}}} \\ & =\mathbf{3} \end{aligned}$	1
27.	The error that occurs by rejecting null hypothesis when it is actually true is called type - I error. The error that occurs by accepting null hypothesis when it is actually not true is called type - II error.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
28.	$\begin{aligned} \text { U.C.L. } & =\overline{\overline{\mathrm{X}}}+\mathrm{A}_{2} \overline{\mathrm{R}} \\ & =\mathbf{4 1 . 4 4 3} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
29.	Number of positive allocations (4) < $\mathrm{m}+\mathrm{n}-1$ (5) \therefore The solution is degenerate.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
30.	(i) Holding $\operatorname{cost}\left(\mathrm{C}_{1}\right)$ (ii) Set-up cost (C_{3}) (Any two)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Q.NO.	III. SECTION - C	MARKS
31.	$\begin{aligned} & \begin{aligned} \text { GFR } & =\frac{\text { Number of Live births during a year }}{\text { Total number of women of child bearing age in the year }} \times 1000 \\ & =\frac{874}{9100} \times 1000=\mathbf{9 6 . 0 4 4} \end{aligned} \\ & \text { ASFR }=\frac{\text { Number of Live births in a specified age group in a year }}{\text { Total number of females in that particular age group in a year }} \times 1000 \\ & \text { ASFR }[25-29]=\mathbf{2 0 0} \\ & \text { ASFR }[30-34]=\mathbf{1 0 0} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
32.		$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
33.	(i) Defining the purpose of index number. (ii) Selection of base period. (iii) Selection of items. (iv) Obtaining price quotations. (v) Choice of an average. (Any five)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
34.	$\mathrm{p}_{1} \mathrm{q}:$ 330 324 49 100 $\Sigma \mathrm{p}_{1} \mathrm{q}=\mathbf{8 0 3}$ $\mathrm{p}_{0} \mathrm{q}$ 225 240 28 50 $\Sigma \mathrm{p}_{0} \mathrm{q}=\mathbf{5 4 3}$ $\mathrm{P}_{01}{ }^{(\mathrm{K})}$ $=\frac{\Sigma \mathrm{p}_{1} \mathrm{q}}{\Sigma \mathrm{p}_{0} \mathrm{q}} \times 100$ $=$ Conclusion: Level of price increased by 47.88% in the current year.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
35.	5-yearly moving sums: 89 109 127 149 178 5-yearly moving averages: 17.8 21.8 25.4 29.8 35.6 Position of trend values	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$
36.	Table and $\mathrm{n}=5, \quad \Sigma \mathrm{y}=400, \quad \Sigma \mathrm{x}=0, \quad \Sigma \mathrm{x}^{2}=10, \quad \Sigma \mathrm{xy}=52$ $\begin{aligned} & \mathrm{a}=\frac{\Sigma \mathrm{y}}{\mathrm{n}}=\frac{400}{5}=\mathbf{8 0} \\ & \mathrm{b}=\frac{\Sigma \mathrm{xy}}{\Sigma \mathrm{x}^{2}}=\frac{52}{10}=\mathbf{5 . 2} \end{aligned}$ The trend equation is, $\mathrm{y}=80+5.2(\mathrm{x})$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
37.	Table and $\mathrm{x}_{0}=20, \mathrm{y}_{0}=53, \Delta_{0}^{1}=-4, \Delta_{0}^{2}=-9, \quad \Delta_{0}^{3}=9$ $\begin{aligned} & \mathrm{x}=\frac{25-20}{10}=\mathbf{0 . 5} \\ & \mathrm{y}_{\mathrm{x}}=\mathrm{y}_{0}+\mathrm{x} \Delta_{0}^{1}+\frac{\mathrm{x}(\mathrm{x}-1)}{2!} \Delta_{0}^{2}+\frac{\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)}{3!} \Delta_{0}^{3} \\ & \mathrm{y}_{25}=\mathbf{5 2 . 6 8 8} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
38.	$\mathrm{n}=5, \mathrm{p}=0.4, \quad \mathrm{q}=0.6, \mathrm{p}(\mathrm{x})={ }^{5} \mathrm{C}_{\mathrm{x}}(0.4)^{\mathrm{x}}(0.6)^{5-\mathrm{x}}, \mathrm{x}=0,1,2,3,4,5 .$ a) $\begin{aligned} \mathrm{p}(0) & ={ }^{5} \mathrm{C}_{0}(0.4)^{0}(0.6)^{5-0} \\ & =\mathbf{0 . 0 7 7 8} \end{aligned}$ b) $\begin{aligned} \mathrm{p}(5) & ={ }^{5} \mathrm{C}_{5}(0.4)^{5}(0.6)^{5-5} \\ & =\mathbf{0 . 0 1 0 2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 39. \& Mean,
\[
\begin{aligned}
\mathrm{E}(\mathrm{x}) \& =\frac{\mathrm{na}}{\mathrm{a}+\mathrm{b}} \\
\& =\mathbf{1 . 6 3 6 4}
\end{aligned}
\]
\[
\text { Variance, } \begin{aligned}
\mathrm{V}(\mathrm{x}) \& =\frac{\mathrm{nab}(\mathrm{a}+\mathrm{b}-\mathrm{n})}{(\mathrm{a}+\mathrm{b})^{2}(\mathrm{a}+\mathrm{b}-1)} \\
\& =\frac{6 \times 3 \times 8(5)}{(11)^{2}(10)} \\
\& =\mathbf{0 . 5 9 5}
\end{aligned}
\] \& 1
1
1
1 \\
\hline 40. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \begin{aligned}
\& \mathrm{H}_{0}: \mu=30 \text { and } \mathrm{H}_{1}: \mu<30 \\
\& \mathrm{Z}_{\mathrm{cal}}=\frac{\overline{\mathrm{x}}-\mu_{0}}{\mathrm{~s}} / \sqrt{\mathrm{n}}
\end{aligned} \\
\& \quad=-\mathbf{2 . 7 9 9 9} \\
\& \mathrm{k}
\end{aligned}=-2.33 \mathrm{l}
\] \\
\(\therefore \mathrm{H}_{0}\) is rejected.
\end{tabular} \& 1
1
1
1
1 \\
\hline 41. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \begin{aligned}
\& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \text { and } \mathrm{H}_{1}: \mu_{1} \neq \mu_{2} \\
\& \mathrm{t}=\frac{\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}}{\sqrt{\frac{\mathrm{n}_{1} \mathrm{~s}_{1}^{2}+\mathrm{n}_{2} \mathrm{~s}_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}\left(\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{\mathrm{n}_{1} \mathrm{n}_{2}}\right)}} \\
\&=\mathbf{2 . 7 9 3 3}
\end{aligned} \\
\& \text { d.f. }
\end{aligned}
\] \\
\(\therefore \mathrm{H}_{0}\) is rejected.
\end{tabular} \& 1
1

1
1
1

\hline 42. \& | H_{0} : 'smoking' and 'literacy' are independent. H_{1} : 'smoking' and 'literacy' are not independent. $\begin{aligned} \chi^{2} & =\frac{\mathrm{N}(\mathrm{ad}-\mathrm{bc})^{2}}{(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{c})(\mathrm{b}+\mathrm{d})} \\ & =\mathbf{3} \\ \text { d.f. } & =1, \mathrm{k}_{2}=3.84 \end{aligned}$ |
| :--- |
| $\therefore \mathrm{H}_{0}$ is accepted. | \& 1

1
1
1
1

\hline 43. \& \& 1
1
1
1
1

\hline 44. \& | Co-ordinates: $(0,4),(4,0)$ and $(0,6),(3,0)$ |
| :--- |
| Drawing two lines. |
| Identification of $\mathrm{F} . \mathrm{R}$. and its corner points: $\mathrm{A}(0,0), \mathrm{B}(0,4), \mathrm{C}(2,2), \mathrm{D}(3,0)$ |
| Objective function values: $\mathrm{Z}_{\mathrm{A}}=0, \mathrm{Z}_{\mathrm{B}}=40, \mathrm{Z}_{\mathrm{C}}=26, \mathrm{Z}_{\mathrm{D}}=9$ |
| Maximum value of $Z=40$ and optimal solution: $x=0 \& y=4$ |
| (For visually challenged students only) |
| Steps for solving LPP graphically. | \& 1

1
1
1
1

\hline 45. \& | Best strategy for player A is A_{1}. |
| :--- |
| Best strategy for player B is B_{1}. |
| The value of the game $\mathrm{v}=0 . \therefore$ The game is fair. | \& 2

1
1
1

\hline
\end{tabular}

Q. NO.	IV. SECTION - D	MARKS
46.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
47.	$\mathrm{p}_{1} \mathrm{q}_{0}:$ 200 300 96 40 $\Sigma \mathrm{p}_{1} \mathrm{q}_{0}=\mathbf{6 3 6}$ $\mathrm{p}_{0} \mathrm{q}_{0}:$ 160 200 80 40 $\sum \mathrm{p}_{0} \mathrm{q}_{0}=\mathbf{4 8 0}$ $\mathrm{p}_{1} \mathrm{q}_{1}:$ 200 240 72 45 $\Sigma \mathrm{p}_{1} \mathrm{q}_{1}=\mathbf{5 5 7}$ $\mathrm{p}_{0} \mathrm{q}_{1}:$ 160 160 60 45 $\Sigma \mathrm{p}_{0} \mathrm{q}_{1}=\mathbf{4 2 5}$ $\mathrm{P}_{01}{ }^{(\mathrm{L})}$ $=\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{0}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{0}} \times 100$ $=\mathbf{1 3 2 . 5}$ $\mathrm{P}_{01}{ }^{(\mathrm{P})}$ $=\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{1}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{1}} \times 100$ $=\mathbf{1 3 1 . 0 6}$ $\mathrm{P}_{01}{ }^{(\mathrm{DB})}$ $=\frac{\mathrm{P}_{01}(\mathrm{~L})+\mathrm{P}_{01}(\mathrm{P})}{2}$ $=\mathbf{1 3 1 . 7 8}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
48.	$\mathrm{p}_{1} \mathrm{q}_{0}:$ 90 150 135 24 $\Sigma \mathrm{p}_{1} \mathrm{q}_{0}=\mathbf{3 9 9}$ $\mathrm{p}_{0} \mathrm{q}_{0}:$ 60 120 90 16 $\Sigma \mathrm{p}_{0} \mathrm{q}_{0}=\mathbf{2 8 6}$ $\mathrm{p}_{1} \mathrm{q}_{1}:$ 75 150 81 48 $\Sigma \mathrm{p}_{1} \mathrm{q}_{1}=\mathbf{3 5 4}$ $\mathrm{p}_{0} \mathrm{q}_{1}:$ 50 120 54 32 $\Sigma \mathrm{p}_{0} \mathrm{q}_{1}=\mathbf{2 5 6}$ $\mathrm{P}_{01}{ }^{(\mathrm{F})}$ $=\sqrt{\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \times \frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{1}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{1}}} \times 100$ $=\mathbf{1 3 8 . 8 9}$ According to TRT, $\mathrm{P}_{01} \mathrm{X}_{10}=1$ $\mathrm{P}_{01}{ }^{\mathrm{F}} X \mathrm{P}_{10}{ }^{\mathrm{F}}=\sqrt{\frac{399}{286} \times \frac{354}{256}} \mathrm{X} \sqrt{\frac{256}{354} \times \frac{286}{399}}=1$ According to FRT, $\mathrm{P}_{01} \mathrm{X}_{\mathrm{Q}}^{01} \left\lvert\,=\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{1}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{0}}\left(\mathrm{~V}_{01}\right)\right.$ $\mathrm{P}_{01}{ }^{\mathrm{F}} \mathrm{X} \mathrm{Q}_{01}{ }^{\mathrm{F}}=\sqrt{\frac{399}{286} \mathrm{X} \frac{354}{256}} \mathrm{X} \sqrt{\frac{256}{286} \times \frac{354}{399}}=\sqrt{\frac{354^{2}}{286^{2}}}=\frac{354}{286}=\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{1}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{0}}$	1 1 1 1 1 1 1 1 1
49.	Table and $\mathrm{n}=5, \Sigma \mathrm{x}=0, \Sigma \mathrm{y}=3550, \Sigma \mathrm{x}^{2}=10, \Sigma \mathrm{x}^{3}=0, \Sigma \mathrm{x}^{4}=34, \Sigma \mathrm{xy}=1410, \Sigma \mathrm{x}^{2} \mathrm{y}=7310$ By substituting and solving the normal equations, $\mathbf{a}=\mathbf{6 8 0}, \mathbf{b}=\mathbf{1 4 1}$ and $\mathbf{c}=\mathbf{1 5}$ The second degree trend is: $y=680+141(x)+15\left(x^{2}\right)$	$\begin{gathered} 6 \\ 1+1+1 \\ 1 \end{gathered}$
50.	$\begin{aligned} & \mathrm{N}=325, \quad \lambda=0.44 \\ & \mathrm{p}(0)=\mathrm{e}^{-0.44}=0.644 \text { or } \mathrm{E}(0)=325 \times 0.644=209.3 \end{aligned}$ E: $209 \quad 92 \quad 20 \quad 3 \quad 1$ H_{0} :Poisson distribution is a good fit. $\quad \mathrm{H}_{1}$:Poisson distribution is not a good fit. $\begin{aligned} \chi^{2} & =\sum \frac{(0-E)^{2}}{E} \\ & =\mathbf{0 . 0 6 2 6} \\ \text { d.f. } & =1, \mathrm{k}_{2}=3.84 \end{aligned}$ $\therefore \mathrm{H}_{0}$ is accepted.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Q. NO.	V. SECTION - E	MARKS
51.	$\mu=64, \sigma=12, Z=\frac{x-\mu}{\sigma}$ is a S.N.V. a) $\begin{aligned} \mathrm{P}(\mathrm{X} \geq 67) & =\mathrm{P}(\mathrm{Z} \geq 0.25) \\ & =\mathbf{0 . 4 0 1 3} \end{aligned}$ b) $\begin{aligned} \mathrm{P}(\mathrm{X}<62) & =\mathrm{P}(\mathrm{Z}<-0.17) \\ & =\mathbf{0 . 4 3 2 5} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
52.	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}=0.5 \text { and } \mathrm{H}_{1}: \mathrm{P} \neq 0.5 \\ & \mathrm{Z}=\frac{\mathrm{p}-\mathrm{P}_{0}}{\sqrt{\frac{\mathrm{P}_{0} \mathrm{Q}_{0}}{\mathrm{n}}}} \\ & =\mathbf{3 . 1 6 4} \\ & \mathrm{k}= \pm 1.96 \\ & \therefore \mathrm{H}_{0} \text { is rejected. } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
53.	$\begin{aligned} & \mathrm{H}_{0}: \sigma^{2}=2.5 \text { and } \mathrm{H}_{1}: \sigma^{2} \neq 2.5 \\ & \chi_{\text {cal }}^{2}=\frac{\mathrm{ns}^{2}}{\sigma_{0}^{2}} \\ &=\mathbf{1 4 . 4} \\ & \text { d.f. }=24, \mathrm{k}_{1}=9.89 \text { and } \mathrm{k}_{2}=45.6 \end{aligned}$ $\therefore \mathrm{H}_{0} \text { is accepted. }$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
54.	$\mathrm{P}-\mathrm{S}_{\mathrm{n}}: 2000$ 2500 3000 3500 4000 $\Sigma \mathrm{C}_{\mathrm{i}}$ $: 100$ 300 630 1140 2000 $\mathrm{~T}(\mathrm{n})$ $: 2100$ 2800 3630 4640 6000 $\mathrm{~A}(\mathrm{n})$ $: 2100$ 1400 1210 $\mathbf{1 1 6 0}$ 1200 \therefore The optimum replacement period, $\mathrm{n}=\mathbf{4}$ years. \therefore	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
55.	$\mathrm{R}=7000 \quad \mathrm{C}_{1}=10 \quad \mathrm{C}_{2}=3 \quad \mathrm{C}_{3}=300$ a) $\begin{aligned} Q^{0} & =\sqrt{\frac{2 C_{3} R}{C_{1}}} \sqrt{\frac{C_{1}+C_{2}}{C_{2}}} \\ & =\mathbf{1 3 4 9} \text { units. } \end{aligned}$ b) $\begin{aligned} \mathrm{C}\left(\mathrm{Q}^{0}, \mathrm{~S}^{0}\right) & =\sqrt{2 \mathrm{C}_{1} \mathrm{C}_{3} \mathrm{R}} \sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}} \\ & =\text { Rs 3113.45/year. } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

