GOVERNMENT OF KARNATAKA DEPARTMENT OF PRE-UNIVERSITY EDUCATION II YEAR PUC ANNUAL EXAMINATION – APRIL/ MAY 2022

SCHEME OF VALUATION

Q. NO.	I. SECTION – A	MARK
1.	Registration method or Census method	1
2.	Cohort is a group of individuals who are born at the same time and who experience the same mortality conditions.	1
3.	Base year prices (p_0)	1
4.	$CPI (AEM) = \frac{\Sigma p_1 q_0}{\Sigma p_0 q_0} \times 100$	1
5.	Graphical representation of time series data.	1
6.	Increase in the price of gold in the past many years. (Any one)	1
7.	Variance = 0.16	1
8.	Mean $= 9$	1
9.	Mean = 0	1
10.	A statistical constant of the population.	1
11.	If an interval is proposed as an estimate of the unknown parameter.	1
12.	The probability of rejecting null hypothesis, when it is not true.	1
13.	$\overline{\mathbf{X}}$ -chart or R-chart	1
14.	$\Sigma a_i = \Sigma b_j$	1
15.	The strategy of a player is the pre-determined rule by which a player determines his course of action.	1

Q.NO.	II. SECTION - B	MARK
16.	(i) They are used in medical research.	1
	(ii) They are used in actuarial science. (Any two)	1
17.	$e_1 = \frac{T_1}{l_1}$	1
	$e_1 = 64$ years	
	$e_1 - 04$ years	1
18.	(i) It satisfies both TRT and FRT.	1
10.	(i) It is free of bias. (Any two)	1
19.	$Q_{01}(P) = \frac{\Sigma p_1 q_1}{\Sigma p_1 q_0} \times 100$	1
	= 98.113	1
	51475	
20.	$CLI(FBM) = \frac{\Sigma WP}{\Sigma W}$	1
	= 105	1
1		1
21.	(i) Graphical method.(ii) Semi-averages method. (Any two)	1
	(I) Senii-averages method. (Thiy two)	1
22.	a) Seasonal variation.	1
	b) Irregular variation.	1
23.	(i) The value of the independent variable should have a common	1
20.	difference.	1
	(ii) The value of X, for which the value of Y is to be interpolated must	1
	be one of the values of X.	
24.	(i) Mean = p	1
2-11	(i) Variance = pq (Any two)	1
25.	Median = 0	1
	S.D. = 1.118	1
26.	$\sigma_{1}^{2} = \sigma_{1}^{2}$	1
	S.E.($\bar{x}_1 - \bar{x}_2$) = $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
	=3	1
27	The encoder that a complex prior time will have the side of the state	
27.	The error that occurs by rejecting null hypothesis when it is actually true is called type – I error.	1
	The error that occurs by accepting null hypothesis when it is actually not true	
	is called type – II error.	1
•		
28.	U.C.L. = $\overline{\overline{X}} + A_2 \overline{R}$	1
20.	= 41.443	
20.		
29.	Number of positive allocations (4) $< m+n-1$ (5)	1
	Number of positive allocations (4) < m+n-1 (5)∴ The solution is degenerate.	1 1
29.	\therefore The solution is degenerate.	1

Q.NO.	III. SECTION – C	MARKS
31.	$GFR = \frac{Number of Live births during a year}{2} x 1000$	
	Total number of women of child bearing age in the year	1
	$= \frac{874}{9100} \times 1000 = 96.044$	1
	$ASFR = \frac{Number of Live births in a specified age group in a year}{X 1000}$	
	Total number of females in that particular age group in a year	1
	ASFR [25-29] = 200	1
	ASFR[30-34] = 100	1
32.	$WSFR = \frac{No.of Female births in a specified age group in a year}{Total no.of females in that particular age group in a year} \times 1000$	1
	Total no.of females in that particular age group in a year	
	WSFR: 25 40 25 25 10 10 2.5	1
	WSFR X S: 22.5 36 22.5 21.25 8.5 7.5 1.75 Σ WSFR X S = 120	1
	$NRR = i x \Sigma WSFR x S$	1
	$= 5 \times 120 = 600$	1
33.	(i) Defining the purpose of index number.	1
	(ii) Selection of base period.	1
	(iii) Selection of items.	1
	(iv) Obtaining price quotations.	1
	(v) Choice of an average. (Any five)	1
34.	p ₁ q: 330 324 49 100 Σ p ₁ q = 803	1
	p_0q : 225 240 28 50 $\Sigma p_0q = 543$	1
	$P_{01}^{(K)} = \frac{\Sigma p_1 q}{\Sigma p_0 q} \times 100$	1
	= 147.88	1
	Conclusion: Level of price increased by 47.88% in the current year.	1
35.	5-yearly moving sums: 89 109 127 149 178	2
	5-yearly moving averages: 17.8 21.8 25.4 29.8 35.6	2
	Position of trend values	1
36.	Table and $n = 5$, $\Sigma y = 400$, $\Sigma x = 0$, $\Sigma x^2 = 10$, $\Sigma x y = 52$	2
	$a = \frac{\Sigma y}{R} = \frac{400}{5} = 80$	1
	$b = \frac{\Sigma xy}{\Sigma x^2} = \frac{52}{10} = 5.2$	1
	The trend equation is, $y = 80 + 5.2(x)$	1
37.	Table and $x_0 = 20$, $y_0 = 53$, $\Delta_0^1 = -4$, $\Delta_0^2 = -9$, $\Delta_0^3 = 9$	2
	$\mu_0 = 25, \mu_0 = 5, \mu_0 = 5$	
	$x = \frac{25 - 20}{10} = 0.5$	
	$y_{x} = y_{0} + x\Delta_{0}^{1} + \frac{x(x-1)}{2!}\Delta_{0}^{2} + \frac{x(x-1)(x-2)}{2!}\Delta_{0}^{3}$	1
	$y_{25} = 52.688$	1
38.	$n = 5, p = 0.4, q = 0.6, p(x) = {}^{5}C_{x} (0.4)^{x} (0.6)^{5-x}, x = 0,1,2,3,4,5.$	1
	a) $p(0) = {}^{5}C_{0} (0.4)^{0} (0.6)^{5-0}$	1
	= 0.0778	1
	b) $p(5) = {}^{5}C_{5} (0.4)^{5} (0.6)^{5-5}$ = 0.0102	

	l na	
39.	Mean, $E(x) = \frac{na}{a+b}$	1
	= 1.6364	1
	Variance, V(x) = $\frac{nab(a+b-n)}{(a+b)^2(a+b-1)}$	1
	$-\frac{6x3x8(5)}{2}$	1
	$ \begin{array}{r} - & & \\ & (11)^2 & (10) \\ = & 0.595 \end{array} $	1
	- 0.395	_
40.	$H_0: \mu = 30 \text{ and } H_1: \mu < 30$	1
	$Z_{cal} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$	1
	$\int \frac{-c_{\text{m}}}{\sqrt{n}}$	1
	= -2.7999	1
	k = -2.33	1
	\therefore H ₀ is rejected.	1
41.	$H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$	1
	$\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2$	
	$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \left(\frac{n_1 + n_2}{n_1 n_2}\right)}}$	1
	$\left \frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2}}{n_{1} + n_{2} - 2} \left(\frac{n_{1} + n_{2}}{n_{1} + n_{2}} \right) \right $	
	= 2.7933 d.f. = 17, k = ± 2.11	1
	\therefore H ₀ is rejected.	1
		1
42.	H ₀ : 'smoking' and 'literacy' are independent.	
	H ₁ : 'smoking' and 'literacy' are not independent.	1
	$\chi^2 = \frac{N(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$	
	$ \begin{array}{c} a = 3 \end{array} $	1
	$d.f. = 1, k_2 = 3.84$	1
	\therefore H ₀ is accepted.	1 1
	-	
43.	$CL = n\bar{p} = 50 \times 0.05 = 2.5$	1
	$LCL = n\overline{p} - 3\sqrt{n\overline{p}\overline{q}}$	1
	= -2.1233	1
	$UCL = n\overline{p} + 3\sqrt{n\overline{p}\overline{q}}$	1
	= 7.1233	1
44.	Co-ordinates: (0,4), (4,0) and (0,6), (3,0)	1
	Drawing two lines.	1
	Identification of F.R. and its corner points: A(0,0), B(0,4), C(2,2), D(3,0)	1
	Objective function values: $Z_A = 0$, $Z_B = 40$, $Z_C = 26$, $Z_D = 9$	1
	Maximum value of $Z = 40$ and optimal solution: $x = 0 \& y = 4$	
	(For visually challenged students only) Steps for solving LPP graphically.	_
45.	Player B	5
43.	$\begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix}$	
		2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	Best strategy for player A is A_1 .	1
	Best strategy for player B is B_1 . The value of the game $y = 0$: The game is fair	1
L	The value of the game $v = 0$. \therefore The game is fair.	1

Q. NO.	IV. SECTION – D	MARKS
46.	$ASDR = \frac{Number of deaths in a specific age group in a year}{T} \times 1000$	1
	ASDR – Total population in that age group in a year ASDR(A): 9 4 10 19	1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	PA: $1,35,000$ $1,00,000$ $4,00,000$ $1,90,000$ $\Sigma PA = 8,25,000$	1
	PB: 1,50,000 1,25,000 4,80,000 2,00,000 ΣPB = 9,55,000	1 1
	$\Sigma P = 90,000$	1
	$STDR_A = \frac{\Sigma PA}{\Sigma P}$ and $STDR_B = \frac{\Sigma PB}{\Sigma P}$	1
	STDR(A) = 9.1667	1
	STDR(B) = 10.611	1 1
	Interpretation: Locality A is healthier.	1
47.	p_1q_0 : 200 300 96 40 $\Sigma p_1q_0 = 636$	1
	$p_0 q_0$: 160 200 80 40 $\Sigma p_0 q_0 = 480$	1
	p_1q_1 : 200 240 72 45 $\Sigma p_1q_1 = 557$	1
	p_0q_1 : 160 160 60 45 $\Sigma p_0q_1 = 425$	1
	$P_{01}^{(L)} = \frac{\Sigma p_1 q_0}{\Sigma p_0 q_0} \times 100$	1
	= 132.5	1
	$P_{01}^{(P)} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \times 100$	1
	= 131.06	1
	$P_{01}^{(DB)} = \frac{P_{01}(L) + P_{01}(P)}{2}$	1
	= 131.78	1
48.	p_1q_0 : 90 150 135 24 $\Sigma p_1q_0 = 399$	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
		-
	$P_{01}^{(F)} = \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0}} X \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} x \ 100$	1
	= 138.89	1
	According to TRT, $P_{01} X P_{10} = 1$	1
	$P_{01}^{F} X P_{10}^{F} = \sqrt{\frac{399}{286}} X \frac{354}{256} X \sqrt{\frac{256}{354}} X \frac{286}{399} = 1$	1
	According to FRT, $P_{01} X Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0} (V_{01})$	
		1
	$P_{01}^{F} X Q_{01}^{F} = \sqrt{\frac{399}{286}} X \frac{354}{256} X \sqrt{\frac{256}{286}} X \frac{354}{399} = \sqrt{\frac{354^{2}}{286^{2}}} = \frac{354}{286} = \frac{\Sigma p_{1}q_{1}}{\Sigma p_{0}q_{0}}$	1
	$\sqrt{200}$ 250 $\sqrt{200}$ 399 $\sqrt{200}$ 200 $2p_0q_0$	1
49.	Table and n=5, $\Sigma x=0$, $\Sigma y=3550$, $\Sigma x^2=10$, $\Sigma x^3=0$, $\Sigma x^4=34$, $\Sigma xy=1410$, $\Sigma x^2y=7310$	6
	By substituting and solving the normal equations, $\mathbf{a} = 680$, $\mathbf{b} = 141$ and $\mathbf{c} = 15$	1+1+1
	The second degree trend is: $y = 680 + 141(x) + 15(x^2)$	1
50.	$N = 325, \lambda = 0.44$	1
	$p(0) = e^{-0.44} = 0.644$ or $E(0) = 325 \times 0.644 = 209.3$	1
	E: 209 92 20 3 1	3
	H_0 :Poisson distribution is a good fit. H_1 :Poisson distribution is not a good fit.	1
	$\chi^2 = \sum \frac{(O-E)^2}{E}$	1
	= 0.0626	1
	d.f. = 1, $k_2 = 3.84$	1
	\therefore H ₀ is accepted.	1

Q. NO.	V. SECTION – E	MARKS
51.	$\mu = 64, \ \sigma = 12, \ Z = \frac{x - \mu}{\sigma}$ is a S.N.V.	1
	a) $P(X \ge 67) = P(Z \ge 0.25)$	1
	= 0.4013	1
	b) $P(X < 62) = P(Z < -0.17)$	1
	= 0.4325	1
52.	$H_0: P = 0.5$ and $H_1: P \neq 0.5$	1
	$Z = \frac{p - P_0}{\sqrt{\frac{P_0 Q_0}{n}}}$	1
	$\sqrt{\frac{P_0Q_0}{n}}$	1
	= 3.164	1
	$k = \pm 1.96$	1
	\therefore H ₀ is rejected.	1
53.	$H_0: \sigma^2 = 2.5$ and $H_1: \sigma^2 \neq 2.5$	1
	$\chi^2_{cal} = \frac{ns^2}{\sigma_0^2}$	
	$\chi_{cal} = \sigma_0^2$	1
	= 14.4	1
	d.f. = 24, $k_1 = 9.89$ and $k_2 = 45.6$ \therefore H ₀ is accepted.	1
	··· II0 is accepted.	1
54.	$P - S_n$: 2000 2500 3000 3500 4000	1
	ΣC_i : 100 300 630 1140 2000	1
	T(n) : 2100 2800 3630 4640 6000	1
	A(n) : 2100 1400 1210 1160 1200	1
		1
	\therefore The optimum replacement period, n = 4 years.	1
55.	$R = 7000$ $C_1 = 10$ $C_2 = 3$ $C_3 = 300$	1
		1
	a) $Q^0 = \sqrt{\frac{2C_3R}{C_1}} \sqrt{\frac{C_1 + C_2}{C_2}}$	1
	= 1349 units.	1
	b) $C(Q^0, S^0) = \sqrt{2C_1C_3R} \sqrt{\frac{C_2}{C_1 + C_2}}$	1
	= Rs 3113.45 /year.	1
