

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD

II YEAR PUC EXAMINATION MARCH 2023 SCHEME OF VALUATION

Subject Code: **35** Subject: **Mathematics**

Instructions:

a) Any answer by alternate method should be valued and suitably awarded.

b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Qn	PART A		
No		Marks	
1	b) Or Writing Symmetric	1	
2	c) Or Writing $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	1	
3	b) Or Writing 6	1	
4	a) Or Writing $ A ^{n-1}$	1	
5	b) Or Writing (-1, 1)	1	
6	d) Or Writing exsecx+c	1	
7	a) Or Writing $\left(\frac{i+j+2k}{\sqrt{6}}\right)$	1	
8	d) Or Writing $0, \frac{1}{2}, \frac{\sqrt{3}}{2}$	1	
9	d) Or Writing 120	1	
10	c) Or Writing P(S)	1	
	II		
11	2	1	
12	11	1	
13	0	1	
14	3	1	
15	3 III	1	
1.0		I	
16	5*7=35		
17	$\cos(x^2+5)2x$	1 1	
18	Two or more vectors having the same initial point	1	
19	The common region determined by all the constraints including non-negative constraints of a LPP is called feasible region	1	
20	3 - 8	1	

PART B			
21	Getting $(f \circ g)(x) = f(g(x)) = f(3x^2) = \cos(3x^2)$		
	Getting $(g \circ f)(x) = g(f(x)) = g(\cos x) = 3(\cos x)^2 = 3\cos^2 x$	1	
22	Writing $\sin^{-1} x = \theta$ and $x = \sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$	1	
	Getting $\cos^{-1} x + \theta = \frac{\pi}{2}$ or $\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$	1	
23	Writing $\sin\left(\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right)$	1	
	Getting $\sin \frac{\pi}{2} = 1$	1	
24	Writing Area= $\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ OR Area= $\frac{1}{2}\begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$ Getting Area= $\frac{15}{2}$	1	
	Getting Area= $\frac{15}{2}$	1	
25	Getting $\frac{dy}{dx} + \cos y \frac{dy}{dx} = -\sin x$	1	
	Getting $\frac{dy}{dx} = \frac{-\sin x}{1 + \cos y}$	1	
26	Writing $y = x^x$ and logy=xlogx	1	
	Getting $\frac{dy}{dx} = y(1 + \log x)$ or $\frac{dy}{dx} = x^{x}(1 + \log x)$	1	
27	Writing $f(x) = \sqrt{x}$ or and $f'(x) = \frac{1}{2\sqrt{x}}$	1	
	Getting $\sqrt{25.3} = 5.03$	1	
28	Writing $\int (2 \sec^2 x - 3 secxtanx) dx$	1	
	Getting $2tanx - 3secx + c$	1	
29	Getting $\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx = [\tan^{-1} x]_{1}^{\sqrt{3}}$	1	
	$Getting = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$	1	
30	Writing $y^2 = 4ax$ and $2y\frac{dy}{dx} = 4a$	1	
	Getting $2y \frac{dy}{dx} = \frac{y^2}{x}$ OR $y^2 - 2xy \frac{dy}{dx} = 0$	1	
31	Getting $\vec{a} \cdot \vec{b} = 10$ and $ \vec{b} = \sqrt{6}$ OR	1	
	Writing Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{ \vec{b} }$		
	Getting Projection of \vec{a} on \vec{b} is $\frac{10}{\sqrt{6}}$	1	

32	Getting $\vec{a} \times \vec{b} = 20\hat{\imath} + 5\hat{\jmath} - 5\hat{k}$	1
	Getting Area of parallelogram= $\sqrt{450}$ sq units OR $15\sqrt{2}$ sq units	1
33	Getting $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 19$ and $ \overrightarrow{b_1} = 7$, $ \overrightarrow{b_2} = 3$	1
	OR Writing $cos\theta = \left \frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{ \overrightarrow{b_1} \overrightarrow{b_2} } \right $	
	Writing OR Getting $\theta = \cos^{-1}\left(\frac{19}{21}\right)$	1
34	Writing $S = \{HHH, HHT, HTH, HTT, TTT, TTH, THT, THH\}$	1
	Getting	1
	PART-C	
35	Reflexive: Every triangle is congruent to itself OR	1
	Showing R is symmetric	1
	Showing R is transitive And Hence R is an equivalence relation	1
36	Getting $2 \tan^{-1} \frac{1}{2} = \tan^{-1} \frac{4}{3}$	1
	Writing $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ OR	1
	$\tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{7} = \tan^{-1}\left(\frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3} \times \frac{1}{7}}\right)$	
	Getting $\tan^{-1} \frac{31}{17}$	1
37	Writing $A' = \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix}$	1
	Getting $\frac{1}{2}(A + A') = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = P$	1
	Getting $\frac{1}{2}(A - A') = \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix} = Q$ and	1
	Getting P+Q= $\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$	
38	Writing, $\frac{dx}{d\theta} = a(1 - \cos\theta)$	1
	Writing, $\frac{dy}{d\theta} = -a\sin\theta$	1

	Getting $\frac{dy}{dx} = \frac{-a\sin\theta}{a(1-\cos\theta)}$ OR Getting $\frac{dy}{dx} - \tan\frac{\theta}{2}$	1
39	Writing, f is continuous in [-2, 2] and f is differentiable in (-2, 2)	1
	Writing, $f^{ }(x) = 2x$ OR Writing $f(-2) = 6$ and $f(2) = 6$	1
	Getting, $x = 0 \in (-2, 2)$	1
40	Writing, $f^{\dagger}(x) = 4x - 3$ OR Getting $x = \frac{3}{4}$	1
	Writing, f is increasing in $(\frac{3}{4}, \infty)$	1
	Writing, f is decreasing in $(-\infty, \frac{3}{4})$	1
41	Writing, $\frac{1}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$	1
	Getting, A = 1 and B = -1	1
	Getting, $I = log(x + 1) - log(x + 2) + c$ OR $I = \frac{log(x+1)}{log(x+2)} + c$	1
42	Writing, I = $x \int sin3x dx - \int (\frac{d(x)}{dx} \int sin3x dx) dx$	1
	Getting, I = $-x \frac{\cos 3x}{3} + \int \frac{\cos 3x}{3} dx$	1
	Getting I = $-x \frac{\cos 3x}{3} + \frac{\sin 3x}{9} + c$	1
43	Getting $I = -x \frac{1}{3} + \frac{1}{9} + c$ Area, $A = \int_{2}^{4} x dy = \int_{2}^{4} 2\sqrt{y} \ dy$	1
	Writing, Area, A = $2 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_2^4$	1
	Getting, Area = $\frac{4}{3} \left[4^{\frac{3}{2}} - 2^{\frac{3}{2}} \right]$ OR Getting $\frac{4}{3} \left[8 - 2\sqrt{2} \right]$	1
44	Writing, $\frac{dy}{1+y^2} = \frac{dx}{1+x^2}$	1
	Writing, $\int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$	1
	Getting, $\tan^{-1} y = \tan^{-1} x + c$	1
45	Writing, LHS = $(\vec{a} + \vec{b})$. $((\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}))$	1
	Writing, $(\vec{a} + \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a}]$	1
	Getting, RHS = $\vec{a} \cdot (\vec{b} \times \vec{c}) + 0 + 0 + 0 + \vec{b} \cdot (\vec{c} \times \vec{a}) = 2[\vec{a} \ \vec{b} \ \vec{c}]$	1
46	OR Writing $\frac{m}{n} = \frac{\overrightarrow{AP}}{\overrightarrow{PB}}$	1

	Writing $m(\overrightarrow{OB} - \overrightarrow{OP}) = n(\overrightarrow{OP} - \overrightarrow{OA})$	1
	Getting $\overrightarrow{OP} = \frac{m\overrightarrow{OB} + n\overrightarrow{OA}}{m+n}$ OR $\overrightarrow{OP} = \frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$	1
	men men	
47	Writing, $\overrightarrow{a_1} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k}$, $\overrightarrow{a_2} = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$, $\overrightarrow{b} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$	1
	OR $(\overrightarrow{a_2} - \overrightarrow{a_1}) = 2 \ \hat{\imath} + \hat{\jmath} - \hat{k} $ OR $(\overrightarrow{a_2} - \overrightarrow{a_1}) \times \vec{b} = 9 \ \hat{\imath} - 14\hat{\jmath} + 4\hat{k}$	
	OR $ (\overrightarrow{a_2} - \overrightarrow{a_1}) \times \overrightarrow{b} = \sqrt{293}$ OR $ \overrightarrow{b} = 7$	1
	Writing, $d = \frac{ (\overrightarrow{a_2} - \overrightarrow{a_1}) \times \overrightarrow{b} }{ \overrightarrow{b} }$	1
	Getting, d = $\frac{\sqrt{293}}{7}$	1
48	$P(E_1) = \frac{60}{100} = 0.6, P(E_2) = \frac{4}{100} = 0.4, P(A E_1) = \frac{30}{100} = 0.3$	1
	$P(A E_2) = \frac{30}{100} = 0.3$	
	Writing $P(E_1 A) = \frac{P(A E_1)P(E_1)}{P(A E_1)P(E_1) + P(A E_2)P(E_2)}$	1
	Getting, $P(E_1/A) = \frac{9}{12}$	1
	PART D	
49	Writing $f(x) = y = 4x + 3$ and getting $g(y) = \frac{y-3}{4}$	
	Showing $f \circ g(y) = y$	1 1
	Showing $g \circ f(x) = x$	1
	Writing $f \circ g = I_Y$ and $gof = I_N$ and concluding f is invertible	1
	or f^{-1} inverse exists.	
	Getting inverse $f^{-1}(x) = \frac{x-3}{4}$ or Writing g is the inverse of f	1
	OR	
	Proving $f(x_1)=f(x_2) \Rightarrow x_1=x_2$	1
	Proving $f(x_1)=f(x_2) \Rightarrow x_1=x_2$ Hence f is one-one	1 1
	Hence f is one-one Writing $x = \frac{y-3}{4}$	1
	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto	1
	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$	1 1 1
	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$	1
	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto	1 1 1
50	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$ Writing f is invertible and getting $f^{-1}(x) = \frac{x-3}{4}$	1 1 1
50	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$ Writing f is invertible and getting $f^{-1}(x) = \frac{x-3}{4}$	1 1 1
50	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$ Writing f is invertible and getting $f^{-1}(x) = \frac{x-3}{4}$	1 1 1
50	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$ Writing f is invertible and getting $f^{-1}(x) = \frac{x-3}{4}$ Getting $A+B=\begin{bmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 7 & -8 & 0 \end{bmatrix}$	1 1 1 1
50	Hence f is one-one Writing $x = \frac{y-3}{4}$ $\forall y \in \mathbb{R}$ there exist $x \in \mathbb{R}$ such that $f(x)=y$ hence f is onto OR Proving $f\left(\frac{y-3}{4}\right) = y$ Writing f is invertible and getting $f^{-1}(x) = \frac{x-3}{4}$ Getting $A+B=\begin{bmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 7 & -8 & 0 \end{bmatrix}$	1 1 1

	Getting $(A+B)C = \begin{bmatrix} 10\\20\\28 \end{bmatrix}$	1
	Getting AC+BC= $\begin{bmatrix} 10\\20\\28 \end{bmatrix}$ and hence (A+B)C=AC+BC	1
51	Writing $A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$	1
	OR Getting $ A = -17 \neq 0$	
	Note: Award a mark, if student writes directly $ A = -17$.	
	Getting adj(A) = $\begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$	2
	Note: If any 4 cofactors are correct award 1 mark.	
	$X = A^{-1}B = \frac{1}{ A }(adjA)B , X = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$	1
	Getting x = 1 , y = 2 , z = 3	1
52	Getting: $\frac{dy}{dx} = 6e^{2x} + 6e^{3x}$	1
	Getting: $\frac{d^2y}{dx^2} = 6e^{2x}(2) + 6e^{3x}(3)$	1
	Writing $\frac{d^2y}{dx^2} = 12e^{2x} + 18e^{3x}$	1
	Substituting the values of $\frac{d^2y}{dx^2}$, $\frac{dy}{dx}$, and y in the LHS	1
	Getting $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$	1
53	Writing $\frac{dx}{dt} = -5$ and $\frac{dy}{dt} = 4$	1
	Writing Perimeter of the rectangle, $P = 2(x + y)$	1
	Getting $\frac{dp}{dt} = 2\left(\frac{dx}{dt} + \frac{dy}{dt}\right) = 2(-5 + 4) = -2$	1
	Writing Area of the rectangle, $A = x.y$	1
	Getting $\frac{dA}{dt} = x \frac{dy}{dt} + y \frac{dx}{dt} = 8(4) + 6(-5) = 2$	1
54	Taking: $x = a \tan \theta$	1
	$\therefore I = \int \frac{a \sec^2 \theta d\theta}{\sqrt{a^2 \tan^2 \theta + a^2}} = \int \sec \theta \ d\theta$	1
	$I = \log x + \sqrt{x^2 + a^2} - \log a + C_1 = \log x + \sqrt{x^2 + a^2} + c,$	1
	$\int \frac{1}{\sqrt{x^2 + 2x + 2}} dx = \int \frac{1}{\sqrt{(x+1)^2 + 1}} dx$	1

	$I = \log \left (x+1) + \sqrt{(x+1)^2 + 1} \right + C$	1
55	Correct Figure: $X \leftarrow Q$ $A(a, 0) \rightarrow X$	1
	Writing Area A = $4\int_{0}^{a} y dx$	1
	Writing Area A = $4 \int_0^a \sqrt{a^2 - x^2} dx$	1
	Getting Area A = $4 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$	1
	Getting Area= πa^2 square unit. Note: Units are not compulsory	1
56	Writing $\frac{dy}{dx} + \frac{2}{x}y = x$ OR Writing $P = \frac{2}{x}$ and $Q = x$	1
	Getting $I.F. = e^{\int Pdx} = e^{\int \frac{2}{x}dx} = e^{2\log(x)} = x^2$	1
	Writing : $y(I.F.) = \int Q(I.F.) dx + C$	1
	Getting $yx^2 = \int x . x^2 dx + C$ OR $yx^2 = \int x^3 dx + C$	1 1
57	Getting general solution $yx^2 = \frac{x^4}{4} + C$.	1
	Correct figure:	
	Note : Award marks for the correct figure, not writing w.r.t.	
	Co-ordinate axis.	
	Writing $\overrightarrow{AP} \cdot \overrightarrow{N} = 0$	1

	T			1 4 1
	Writing $(\overrightarrow{OP} - \overrightarrow{OA})$	$ \cdot \vec{N} = 0$ and	$(\vec{r} - \vec{a}) \cdot \vec{N} = 0$	1
	Writing			1
		$\vec{a} = x_1 \hat{\imath} + y_1 \hat{\jmath} \cdot$	$+z_1\hat{k}$ and $\vec{N}=A\hat{\imath}+B\hat{\jmath}+C\hat{k}$	
			$A(y) + B(y - y_1 + C(z - z_1)) = 0$	1
58	$n=6, \ p=\frac{1}{2} \ \text{and}$	$q = \frac{1}{2}$		1
30	Writing $P(X = x) =$	$= nC_x p^x q^{n-x}$		1
	Getting $P(x=5)=6C_1$	$\frac{1}{5}\left(\frac{1}{2}\right)^6 = \frac{3}{32}$		1
	P(X=5) + P(X=6)	$) = 6C_5 \left(\frac{1}{2}\right)^6 + \frac{1}{2}$	$6C_6 \left(\frac{1}{2}\right)^6 = \frac{7}{64}$	1
	Getting $P(X \le 5) =$ P(none is a spade)		$= 1 - 6C_6 \left(\frac{1}{2}\right)^6 = 1 - \frac{1}{64} = \frac{63}{64}$	1
	1 (Holic is a space)		RT E	
59	12 10 6 C(0, 6) 3x+2y= A(0,4) E(2, 3 2 (0,0) 2 D(4,0)	12 () (+2y = 8 B(8.0)	Drawing the graph of 2 lines carries 2 mark and shading the feasible region carries 1 mark	2+1=3
	Getting corner poi	nts A(0,4),D(4	+,0),E(2,3) and O(0,0)	1
	Corner points	Z=-3x+4y		1
	A(0,4)	16	_	1
	D(4,0)	-12		
	E(2,3)	6	_	
	O(0,0)	0		
	Minimum of Z is -12 at ((4,0) OR showing it in the above second row			1
	OR			

	$I = \int_{0}^{a} f(x) dx$ Putting $x = a - t$, then $dx = -dt$ and $x = 0$, then $t = a$ and $x = a$, then $t = 0$	1
	Getting $I = -\int_{a}^{0} f(a-t)dt$	
	Getting I = $\int_{0}^{a} f(a-x)dx$	1
	Writing $I = \int_0^{\frac{\pi}{2}} \frac{\cos^5 x}{\sin^5 x + \cos^5 x} dx$ and Getting $I = \int_0^{\frac{\pi}{2}} \frac{\sin^5 x}{\sin^5 x + \cos^5 x} dx$	1
	Getting $2I = \int_0^{\frac{\pi}{2}} 1 dx$	1
	Getting $I = \frac{\pi}{4}$	1
60	Writing $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} (x) = f(2)$	1
	Getting $\lim_{x \to 2^{-}} f(x) = 4k$	1
	Getting $\lim_{x \to 2^+} (x) = 3$	1
	Getting $k = \frac{3}{4}$	1
	OR	
	Applying	1
	$R_1 \to R_1 + R_2 + R_3$ and getting $\begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$	
	$ (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} $	1
	Applying $c_2 = c_2 - c_1$ and $c_3 \to c_3 - c_1$ and getting $(a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ 2b & -(a+b+c) & 0 \\ 2c & 0 & -(a+b+c) \end{vmatrix}$	1
	On expansion getting (a+b+c) ³	1
