GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD

DEPARTMENT OF PRE-UNIVERSITY EDUCATION

II PUC ANNUAL EXAMINATION : MARCH – 2023

Subject code: 33

Γ

SCHEME OF EVALUATION

Subject: PHYSICS

General Instructions:

1. All parts are compulsory.

2. Answers without relevant diagram / figure / circuit wherever necessary will not carry any marks.

3. Direct answers to the numerical problems without detailed solutions will not carry any marks.

	PART – A	
I. Pi	ick the correct option among the four given options for ALL of the following	
	questions: $15 \times 1 = 15$,
1.	Physical quantity measured in terms of "coulomb" is	
	a) electric charge b) electric current c) electric flux d) electric field	
Ans	a) electric charge	1
2.	The electric field inside the cavity of a charged conductor is zero, this is known as	
	a) charging b) grounding c) electrostatic shielding d) electrostatic induction	
Ans	c) electrostatic shielding	1
3.	An example for polar molecule is:	
	a) oxygen molecule b) nitrogen molecule c) water molecule d) hydrogen molecule	
Ans	c) water molecule	1
4.	The magnitude of the drift velocity per unit electric field is	
	a) mobility b) drift velocity c) relaxation time d) resistivity	
Ans	a) mobility	1
5.	The device used to accelerate charged particle is	
	a) electroscope b) cyclotron c) galvanometer d) ammeter	
Ans	b) cyclotron	1
6.	a) Cause's law in magneticm	
	a) Gauss's law in magnetism (b) Gauss's law in electrostatics a) Ampere's circuited law (c) Piet Severt's law	
Anc	a) Cause's law in magnetism	1
Alls	a) Gauss s iaw in magnetism	1
7.	S.1. Unit of mutual inductance of pair of colls is	
A 10.0	a) henry b) onm c) farad d) onm-metre	1
Ans o	a) neary	1
0.	a) remains unchanged b) be doubled c) be halved d) becomes four times	
Δns	d) becomes four times	1
9	The relation between neak value of current (i _) and rms value of current (I) is	
	$a_{1}L = \frac{i_{m}}{i_{m}}$ $b_{1}L = i_{m}\sqrt{2}$ $a_{2}L = 2i_{m}$ $d_{1}L = \frac{i_{m}}{i_{m}}$	
	a) $I = \frac{1}{\sqrt{2}}$ b) $I = l_m \sqrt{2}$ c) $I = 2 l_m$ d) $I = \frac{1}{2}$	
Ans	a) $I = \frac{\iota_m}{\sqrt{2}}$	1
10.	The ultraviolet region of the electromagnetic spectrum lies between	
	a) X-ray region and visible region b) Microwave region and radio-wave region	
	c) γ-rays region and X-rays region d) Visible region and microwave region	
Ans	a) X-ray region and visible region	1

11.	Snell's law of refraction invalid at an angle of incidence(i) is	
	a) $i = 30^{\circ}$ b) $i = 60^{\circ}$ c) $i = 0^{\circ}$ d) $i = 90^{\circ}$	
Ans	c) $i = 0^{\circ}$	1
12.	When a point source of light is placed at the principal focus of a thin convex lens, the shape	
	of the emergent wave front is	
	a) Spherical convergent wave front b) Spherical divergent wave front	
	c) Plane wave front d) Cylindrical wave front	
Ans	c) Plane wave front	1
13.	C.J. Davisson – L.H. Germer experiment proved:	
	a) wave nature of electrons b) particle nature of electrons	
	c) wave nature of light d) particle nature of light	
Ans	a) wave nature of electrons	1
14.	Function of moderator in a nuclear reactor is	
	a) to slow down fast neutrons b) to absorb the neutrons	
	c) to reduce heat energy d) to control the chain reaction	
Ans	a) to slow down fast neutrons	1
15.	Energy gap (E_g) between the valence band and the conduction band for conductor is	
	a) $Eg = 0$ b) $E_g < 3eV$ c) $E_g > 3eV$ d) $E_g = 3eV$	
Ans	$\mathbf{a)} \mathbf{E}\mathbf{g} = 0$	1
II. F	ill in the blanks by choosing appropriate answer given in the brackets for ALL	
tł	the following questions: $5 \times 1 = 5$	
((Curie temperature, electric dipole, transverse, isotopes, zener diode)	
16	A pair of equal and opposite point charges a and $-a$ separated by a distance 2a is an	
10.	The pair of equal and opposite point enarges quild 'q separated by a distance 2a is an	
Ans	electric dipole	1
17.	Currie terror suction from ferromagnetism to paramagnetism is called	
	Curie temperature Phonomenon of polarisation proves the nature of light wayses	1
10.	r nenomenon of polarisation proves the nature of fight waves.	
Ans	transverse	1
19.	Nuclei having same atomic number and different mass number are called	
Ans	isotopes	1
20.	is used as voltage regulator.	
Ans	Zener diode	1
	PART – B	
III.	Answer any FIVE of the following questions: $5 \times 2 =$	10
21.	On what factors does the capacitance of a parallel plate capacitor depend?	
Ans	(i) Area of plate (ii) distance between the plates (iii) dielectric constant or dielectric medium	1
	between the plates (Any two, one mark each)	1
22.	State and explain Ampere's circuital law.	
Ans	Statement: The line integral of the magnetic field around a closed loop is equal to μ_0 times the	1
/ 110	current enclosed by the loop	-
	Evaluation $\vec{AP} \vec{dI} = \mu \vec{L} \cdot \vec{P}$ Magnetic field dI line element/elemental length and \vec{L} surrant	1
00	Explanation: ψ B. ui – $\mu_0 i$, B – Magnetic field, ui – fine element/elemental length and I – current	
<i>4</i> 3.	Denne magnetic dip and decimation at a place.	
Ans	The angle between earth's magnetic field and the horizontal in the magnetic meridian at a place is	1
	Called dip. $\mathbf{D}_{\mathbf{r}}$	_
	Declination . The angle between the magnetic meridian and geographic meridian at a place. OR	1

24.	What are eddy current? Mention any one use of it.	
Ans	When bulk pieces of conductors/metals are subjected to changing magnetic flux/field, induced	
	currents are produced in them. These currents are called eddy currents.	1
	Uses: Magnetic braking in trains, electromagnetic damping, Induction furnace, electric power	1
	meters, speedometer of vehicles, dead beat galvanometer (any one	e)
25.	Write two sources of energy loss in a transformer.	
Ans	Flux leakage/ Magnetic loss.	1
	• Resistance of the windings/coils OR Copper loss.	1
	• Eddy currents loss.	
	• Hysteresis loss. (any two)
26.	What is displacement current? Give the expression for it.	
Ans	The current due to time varying electric flux is called displacement current.	1
	Displacement current = $\varepsilon_0 \frac{d\phi_E}{d\phi_E}$ OR $i_d = \varepsilon_0 \frac{d\phi_E}{d\phi_E}$ OR $I_d = \varepsilon_0 \frac{d\phi_E}{d\phi_E}$	1
27.	Mention the expression for limit of resolution of a telescope and explain the terms	S.
	0.61 1.22 1.22 1.22	1
Ans	Limit of resolution ($\Delta \theta$ or $d\theta$) = $\frac{0.01 \ R}{2}$ OR $\Delta \theta = \frac{1.22 \ R}{22}$ OR $\Delta \theta = \frac{1.22 \ R}{D}$	-
	α 2α D where λ the wavelength of light and 2a or D is the diameter of the objective.	1
	a is the radius of the aparture of objective	-
	a is the radius of the aperture of objective.	
28.	Name the spectral series of hydrogen atom lies in	
Δns	a) Ultraviolet region · Lyman series	1
7 113	b) Visible region : Balmer series	1
29.	Give any two differences between nuclear fission and nuclear fusion.	
Ans	Nuclear fission Nuclear fusion	
	• The process in which heavy nucleus splits • The process in which two lighter nuclei	1
	into two nuclei of comparable masses with combine to form a single nucleus with	the 1
	release of energy is known as fission. release of energy is known as fusion.	1 I
	 Fission can take place at room temperature. Fusion takes place only at high temperature. Fuergy released per nucleon (or per unit 	re.
	• Energy released per nucleon (or per unit mass) of the reactant is less mass) of the reactant is more.	
	 Energy released per reaction is more. Energy released per reaction is less. 	
	Can be controlled. Cannot be controlled.	
	(any two OR any other correct differen	ce)
	PART – C	
IV	7. Answer any FIVE of the following questions: $5 \times 3 = 1$	5
20	Write any three properties of electric field lines	
30. Ans	Electric field lines start from positive charge and end at negative charge	1
Alls	For a single charge, they may start or end at infinity	L L
	 In a charge-free region, electric field lines are continuous curves without any break. 	1
	• Two field lines can never cross each other (never intersect each other).	1
1		1
	• A tangent drawn to a field line at any point gives the direction of electric field at that point.	

34.	Derive an expression for mo perpendicular to the uniform mag	tional e.m.f induced in a conductor moving netic field.	
Ans	× × × ı × × × k ×	Labelled diagram (current not necessary in figure)	1
		= Magnetic flux enclosed by the loop PQRS is	
		$\phi_{\rm B} = BA\cos 0 = Blx$	1
		dø	
		Induced emf $\varepsilon = -\frac{d\varphi_B}{dt}$	
	× <u>x x x x </u> <u>Q x</u>	$= \begin{bmatrix} d & dx \\ dx & dx \end{bmatrix}$	1
	$\times^{\mathbf{R}} \times $	$\varepsilon = -\frac{1}{dt} (B l x) = -B l \frac{1}{dt} = B l v$	-
	x	(because $-dx/dt = v$)	
35.	Arrive the relation between focal lengtl	and radius of curvature of a spherical concave mirror.	
Ans	M	Labelled diagram with arrows	1
	e e	\angle MCP = θ and \angle MFP = 2 θ .	
		$\tan \theta = \frac{\text{MD}}{\text{CD}}$ and $\tan 2\theta = \frac{\text{MD}}{\text{FD}}$.	
	C F D P	For small angle θ , $\tan \theta \approx \theta$ and $\tan 2\theta \approx 2\theta$.	
		$\therefore 2\theta = \frac{MD}{FD}, \qquad 2\frac{MD}{CD} = \frac{MD}{FD} \implies FD = \frac{CD}{2}$	1
		For small θ , the point D is very close to the point P. Therefore, FD = $-f$ and CD = $-R$	
		Focal length: $f = \frac{R}{2}$	1
36.	Give the three postulates of Bohr	s atomic model.	
Ans	• Bohr's first postulate: An electron i	n an atom could revolve in certain stable orbits without the	
	emission of radiant energy.		1
	• Bonr's second postulate: An electro which the angular momentum is some	e integral multiple of $h/2\pi$, where h is the Planck's constant.	1
	• Bohr's third postulate: An electron	might make a transition from one of its specified non-	-
	radiating orbits to another of lower en	ergy. When it does so, a photon is emitted having energy	1
37.	Calculate the mass defect and bin	ding energy of helium nucleus (² He ⁴) using the	
	following data in MeV. Mass of pro	bton 1.00727 u, Mass of neutron = 1.00866 u and	
	Mass of helium nucleus = 4.00260	u.	
Ans	Mass defect: $\Delta m = [Zm_p + (A-Z)m_n]$	-M	1
	$\Delta m = 2(1.00727) + (4 - 2)$	(1.00866) - 4.00260 = 0.02926 u	1
	Binding energy : $E_b = \Delta m \times 931.5 MeV =$	0.02926×931.5 <i>M</i> eV = 27.26 MeV OR 27 MeV	1
38.	Write the logical symbol and truth	table of NAND gate.	
Ans	Logical Symbol: Logi	cal Symbol	1
	A		2
	Y In	outs Output	
		$\begin{array}{c c} \mathbf{B} & \mathbf{Y} = \mathbf{A} \bullet \mathbf{B} \\ \hline \mathbf{O} & \mathbf{I} \end{array}$	
	0		
	Note	For any two correct sets of truth values one mark each.	

	VI. Answer any TWO of the following questions: $2 \times 5 = 10$	
45.	Charges $2\mu C$, $4\mu C$ and $6\mu C$ are placed at the three corners A, B and C respectively	
	of a square ABCD of side X metre. Find the charge that must be placed at the	
	fourth corner so that the total potential at the centre of the square is zero.	
Ans	$\begin{array}{c} q_1 = 2\mu C & q_2 = 4\mu C \\ A & figure & OR & Explanation \\ \hline \\ x & figure & OR & Explanation \\ \hline \\ D & figure & OR & Explanation \\ \hline \\ D & fistance of centre(O) from each corner: AO=BO=CO=DO=X. \\ Let q_1, q_2, q_3, q_4 be the point charges at four corners A, B, C \\ and D respectively. The total potential at the centre due to the charge configuration (4 charges) is zero. V = 0 \\ \hline \\ \end{array}$	1
	Formula: Electric potential $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$ (1)	1
	OR $V = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{AO} + \frac{q_2}{BO} + \frac{q_3}{CO} + \frac{q_4}{DO} \right) = 0$ (2)	
	$\Rightarrow \left(\frac{q_1 + q_2 + q_3 + q_4}{AO}\right) = 0 \qquad \Rightarrow q_1 + q_2 + q_3 + q_4 = 0$	1
	$q_4 = -(q_1 + q_2 + q_3) = -(2 + 4 + 6)\mu C$	1
	$q_4 = -12\mu C$	1
	Thus a charge of ' -12μ C' must be placed at fourth corner D	
	Note: Any other correct detailed method should be given full marks.	
46.	Three resistors 2 Ω , 3 Ω and 6 Ω are combined in parallel. What is the total resistance of the combination? The combination is connected to a battery of emf 2V and negligible internal resistance. Determine the current through each resistor and total current drawn from the battery.	
A ma	Given $R_1 = 2\Omega$, $R_2 = 3\Omega$, $R_3 = 6\Omega$, $\epsilon = 2 V$, $r \approx 0$, $R_P = ?$, $I_1 = ?$, $I_2 = ?$, $I_3 = ?$, $I = ?$,	
Alls	Total (effective) resistance R_P is given by, $\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	
	Total resistance of the combination: $R_p = 1 \Omega$	1
	Current through R_1 is $I_1 = \varepsilon / R_1 = 2/2 = 1$ A	1
	Current through R_2 is $I_2 = \varepsilon / R_2 = 2/3$ A	1
	Current through R_3 is $I_3 = \varepsilon / R_3 = 2/6 = 1/3$ A	1
	Total current drawn from the battery is $I = 1 + 2/3 + 1/3 = 2 A$	1
	OR Total current drawn from the battery is I = $\frac{\epsilon}{R_P + r} = \frac{2}{1+0} = 2$ A	

47.	A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a	
	series LCR circuit in which R = 3 Ω , L = 25.48 mH and C = 796 μ F.	
	Calculate: a) impedance of the circuit	
	b) the phase difference between the voltage across the source and the current.	
Ans	Given, peak voltage $v_m = 283V$, $R = 3 \Omega$, $L = 25.48 \text{ mH}$, $C = 796 \mu\text{F}$	
	a) $X_L = 2\pi v L = 2 \times 3.14 \times 50 \times 25.48 \times 10^{-3} = 8 \Omega$	1
	$X_{\rm C} = \frac{1}{2\pi\nu C} = \frac{1}{2\times 3.14 \times 50 \times 796 \times 10^{-6}} = 4 \ \Omega$	Ţ
	Impedance: $Z = \sqrt{R^2 + (X_C - X_L)^2}$	1
	$Z = \sqrt{9 + (4 - 8)^2} = \sqrt{9 + 16} = 5 \Omega$	1
	b) $\tan\phi = \frac{X_{\rm C} - X_{\rm L}}{R}$ OR $\phi = \tan^{-1}\left(\frac{X_{\rm C} - X_{\rm L}}{R}\right)$	1
	$\phi = \tan^{-1}\left(\frac{4-8}{3}\right) = \tan^{-1}\left(\frac{-4}{3}\right) = \tan^{-1}\left(-1.3333\right) \approx -53^{\circ}$	1
	Alternatively, $\cos \phi = \frac{R}{Z} \Rightarrow \phi = \cos^{-1}\left(\frac{R}{Z}\right) = \cos^{-1}\left(\frac{3}{5}\right) \approx 53^{\circ}$	
	Note : Full marks should be awarded for taking $Z = \sqrt{R^2 + (X_L - X_C)^2}$ & getting Z=5 Ω	
	and $\phi = \tan^{-1}\left(\frac{X_L - X_C}{R}\right) = \tan^{-1}\left(\frac{4}{3}\right) \approx 53^{\circ}$	
48.	Two narrow slits in Young's double slit experiment are 0.18 mm apart. When they	
	are illuminated by a monochromatic light, fringes of width 2.7 mm are obtained on	
	a screen 0.8m away. Find the wavelength of light used. If the source is replaced by	
	another source of wavelength 450nm, find the change in the fringe width.	
Ans	Given $d = 0.18 \text{ mm} = 0.18 \times 10^{-3} \text{ m}$, $\beta = 2.7 \text{ mm} = 2.7 \times 10^{-3} \text{ m}$, $D = 0.8 \text{ m}$	
	Fringe width : $\beta = \frac{\lambda D}{\Delta D}$	_
	d	1
	$\begin{array}{ccc} d \\ d $	1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$	1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm	1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm	1 1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm Change in fringe width: $\Delta\beta = \beta - \beta' = 2.7$ mm - 2mm = 0.7 mm	1 1 1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm Change in fringe width: $\Delta\beta = \beta - \beta' = 2.7$ mm - 2mm = 0.7 mm OR change in fringe width $\Delta\beta = \beta' - \beta = 2$ mm - 2.7 mm = -0.7 mm is also considered.	1 1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm Change in fringe width: $\Delta\beta = \beta - \beta' = 2.7$ mm - 2mm = 0.7 mm OR change in fringe width $\Delta\beta = \beta' - \beta = 2$ mm - 2.7 mm = -0.7 mm is also considered. If change in fringe width is calculated directly without β' calculation,	1 1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm Change in fringe width: $\Delta\beta = \beta - \beta' = 2.7$ mm – 2mm = 0.7 mm OR change in fringe width $\Delta\beta = \beta' - \beta = 2$ mm – 2.7 mm = -0.7 mm is also considered. If change in fringe width is calculated directly without β' calculation, then also full marks should be awarded as follows.	1 1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm Change in fringe width: $\Delta\beta = \beta - \beta' = 2.7$ mm – 2mm = 0.7 mm OR change in fringe width $\Delta\beta = \beta' - \beta = 2$ mm – 2.7 mm = -0.7 mm is also considered. If change in fringe width is calculated directly without β' calculation, then also full marks should be awarded as follows. $\Delta\beta = \frac{(607.5 \times 10^{-9} - 450 \times 10^{-9}) \times 0.8}{0.18 \times 10^{-9}} \times 0.8$	1 1 1 1
	$\lambda = \frac{\beta d}{d} = \frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$ Wavelength of light: $\lambda = 0.6075 \times 10^{-6}$ m OR 607.5 nm New fringe width : $\beta' = \frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}} = 2000 \times 10^{-6}$ m = 2mm Change in fringe width: $\Delta\beta = \beta - \beta' = 2.7$ mm $- 2$ mm = 0.7 mm OR change in fringe width $\Delta\beta = \beta' - \beta = 2$ mm $- 2.7$ mm = -0.7 mm is also considered. If change in fringe width is calculated directly without β' calculation, then also full marks should be awarded as follows. $\Delta\beta = \frac{(607.5 \times 10^{-9} - 450 \times 10^{-9}) \times 0.8}{0.18 \times 10^{-3}}$	1 1 1 1

Note: Any other alternate correct method/answer should be considered.