KARNATAKA SCHOOL EXAMINATION & ASSESSMENT BOARD

II PUC EXAMINATION – 2; MAY – 2024

SUBJECT: CHEMISTRY

MODEL ANSWERS

SUBJECT CODE: 34

		PART-A			
I.	Select the correct option from the given choices: 15×1			=15	
1)	To determine molar mass of Biomolecules and Polymers, which Colligative				
	property based method	has advantage over	other methods?		
	(a) Relative lowering o	f vapour pressure	(b) Elevation	on of Boiling point	
	(c) Depression in freez	ing point	(d) Osmoti	c pressure	
Ans:	(d) Osmotic pressure	(or) (d)	(or)	Osmotic pressure	1
2)	The S.I. unit of conduc	tivity is			
	(a) Sm^{-1}	(b) ms ⁻¹	(c) Sm^{-2}	(d) Sm ²	
Ans:	(a) Sm^{-1}	(or) (a)		(or) Sm ⁻¹	1
3)	Which of the following e	electrolytes limiting m	olar conductivity (λ	m°) cannot be	
	determined by extrapolat	ion of λ_m to Zero Cor	centration in the gr	aph of $\lambda_{\rm m}$ v/s \sqrt{c} ?	
	(a) NaCl	(b) CaCl ₂	(c) CH ₃ COOH	(d) MgSO ₄	
Ans:	(c) CH ₃ COOH	(or) (c)		(or) CH ₃ COOH	1
4)	In a zero order reaction	n, the rate of reaction	n is		
	(a) Independent on read	ctant concentration			
	(b) Depends on concen	tration of reactants			
	(c) Inversely proportion	nal to reactant conce	entration		
	(d) Depends on concen	tration of product			
Ans:	(a) Independent on re	eactant concentration	0 n	(or) (a)	1
	(or) Independent on reactant concentration				
5)	Which is less stable an	nong the following?			
	(a) WO_3 (b) 1	MoO ₃ (c)) CrO_3 (d) WO ₃ and MoO ₃	
Ans:	(c) CrO ₃	(or) (c)		(or) CrO ₃	1
6)	The correct IUPAC name	me of $K_2 [Zn(OH)_4]$			
	(a) Potassium tetrahydr	roxidozincate (II)			
	(b) Dipotassium tetrahy	ydroxyzinc (II)			
	(c) Potassium tetrahydr	roxyzinc (IV)			
	(d) Potassium tetrahydr	roxyzincate (II)			
Ans:	(a) Potassium tetrahy	droxidozincate (II))	(or) (a)	1
	(or) Potassium tetrah	ydroxidozincate (I	[)		-

7)	The reagent used in Sandmeyer's reaction is				
	(a) CrO_2Cl_2 (b) $Zn - Hg$ (c) Cu_2Cl_2 (d) $H_2/Pd - BaSO_4$				
Ans:	(c) Cu_2Cl_2 (or) (c) (or) Cu_2Cl_2	1			
8)	Catechol is				
	(a)Benzene-1,2-diol (b) Benzene-1,3-diol				
	(c) Benzene-1,4-diol (d) Benzene-1,5-diol				
Ans:	(a)Benzene-1,2-diol (or) (a) (or) Benzene-1,2-diol	1			
9)	$H_2C = CH - CH_2 - OH$ is an example of				
	(a) Allylic alcohol (b) Vinyl alcohol (c) Benzylic alcohol (d) Phenols				
Ans:	(a) Allylic alcohol (or) (a) (or) Allylic alcohol	1			
10)	Rochelle salt is				
	(a) Alkaline sodium potassium tartrate				
	(b) Acidic sodium potassium tartrate				
	(c) Neutral sodium potassium tartrate				
	(d) Aqueous potassium tartrate				
Ans:	(a) Alkaline sodium potassium tartrate (or) (a)	1			
	(or) Alkaline sodium potassium tartrate	I			
11)	Carboxylic acids are more acidic than phenols because				
	(a) Carboxylate ion has non-equivalent resonance structure				
	(b) Carboxylate ion is more stabilized than phenoxide ion				
	(d) Phenol has less pKa than Carboxylic acid				
Ans:	(b) Carboxylate ion is more stabilized than phenoxide ion (or) (b)				
	(or) Carboxylate ion is more stabilized than phenoxide ion	1			
12)					
	The bond angle in N is less than 109.5° due to				
	(a) sp ² hybridisation of N-atom				
	(b) Presence of unshared pair electrons in 4th orbital of N-atom (a) dsp^2 hybridization of N atom				
	(d) unpaired electrons of N-atom				
Ans:	(b) Presence of unshared pair electrons in 4th orbital of N-atom (or) (b)				
	(or) Presence of unshared pair electrons in 4th orbital of N-atom	1			
	(Mark should be awarded, if the candidate attempted this question due to	1			
	missing of a methyl group)				

13)	Which of the following amides cannot give primary amines by Hoffmann –			
	Bromamide degradation reaction?			
	Q Q			
	(a) $H_3C - C - NH_2$		(b) $H - C - NH_2$	
	O		O	
			$CH_2 - CH_2 - NH_2$	
	(c) (c)		(d)	
Ans:	Q		Q	
				1
	(b) II C IVII2	(or) (b)	(or) in C (hig)	
14)	Which of the following	Carbohydrates is a	also known as invert sugar?	
	(a) Maltose		(b) Lactose	
	(c) Sucrose		(d) Glucose	
Ans:	(c) Sucrose	(or) (c)	(or) Sucrose	1
15)	The vitamin that cannot	be stored in our b	ody is	
	(a) Vitamin – A		(b) Vitamin – D	
	(c) Vitamin – C		(d) Vitamin – K	
Ans:	(c) Vitamin – C	(or) (c)	(or) Vitamin – C	1
II.	Fill in the blanks by ch	oosing the appro	priate word from those given	5×1=5
	in the brackets: [Collis	sion frequency, M	lethanol, Molarity,	
	Hydrocarbon, Sc ⁺³ , Cu	ı]		
16)	is number	of moles of solute	dissolved in one litre of solution.	
Ans:	Molarity			1
17)	The number of Collisions per second per unit volume of the reaction mixture			
	is called			
Ans:	Collision frequency			1
18)	Due to the absence of up	npaired electron _	ion is diamagnetic.	
Ans:	Sc ⁺³		1	
19)	In Wurtz reaction, Al	kyl halides react	with sodium in dry ether to g	ive
Ans:	Hydrocarbon			1
20)	When Methylamine reacts with nitrous acid, it produces with		vith	
	when weight in the			
	liberation of nitrogen ga	IS.		
Ans:	liberation of nitrogen ga Methanol	IS.		1

MODEL ANSWER II PUC EXAMINATION - 2; MAY - 2024

26)	Write any two nitrogeneous base commonly found in both RNA and DNA.		
Ans:	adenine (or) (A) (or) A		
	guanine (or) (G) (or) G	2	
	cytosine (or) (C) (or) C (Any Two; 1 mark for each)		
	PART - C		
IV.	Answer any three of the following. Each question carries three marks. 3×3	= 9	
27)	Write any 3 characteristic properties of interstitial compounds.		
Ans:	1. They have high melting points than those of pure metals.		
	2. They are very hard. 3. They retain metallic conductivity.	3	
	4. They are chemically inert. (Any Three; I mark for each)		
(a) (b)	Name the ore used in the preparation of Potassium dichromate		
(0)	Complete the following equations: $C = O^{2-} + 14 \mu^{+} + C = 2^{+}$		
(i)	$Cr_2O_7^2 + 14 H^2 + 6 Fe^2 \longrightarrow$		
(ii)	$10 \text{ I}^- + 2 \text{ MnO}_4^- + 16 \text{ H}^+ \longrightarrow$		
Ans:(a)	Chromite ore (or) $FeCr_2O_4$ (or) $FeO.Cr_2O_3$ (or) Chrome iron	1	
(b)	$2 Cr^{3+} + 6 F_{2}^{3+} + 7 H O$	1	
(i)		I	
(11)	$2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 5 \text{ I}_2$ (All products should be mentioned with balance)	1	
29)(a)	Among Lanthanoids and Actinoids series which series has more radioactive		
(b)	elements? Write any two consequences of Lanthanoid contraction		
$\frac{(U)}{Ans(a)}$			
71115.(a)	Actinoids	1	
(b)	Consequences:		
	1. The separation of lanthanoids in pure state becomes difficult. (or)		
	Difficulty in separation of lanthanoids due to similar chemical properties.		
	2. The atomic radii of 3rd row transition series elements are almost similar to that of 2nd row transition series elements (or)	2	
	The identical radii of Zirconium (Zr) and Hafnium (Hf)		
	3 The covalent character increases		
	4. Basicity decreases.		
	(Any correct consequences: 1 mark for each)		
30)	Write any three postulates of Werner theory of Coordination compounds.		
Ans	1. In coordination compounds metals show two types of linkages (valences)-primary		
1 1115.	and secondary.		
	2. The primary valences are normally ionisable and are satisfied by negative ions.		
	3. The secondary valences are non-ionisable. These are satisfied by neutral molecules	2	
	or negative ions. The secondary valence is equal to the coordination number and is	3	
	fixed for a metal.		
	4. The ions/groups bound by the secondary linkages to the metal have characteristic		
	spatial arrangements corresponding to different coordination numbers.		
	(Any Three; 1 mark for each)		

V	Answer any two of the folowing. Each	question carries three marks:	2 × 3 =	: 6
33)	Write any three differences between id	eal and non-ideal solutions.		
Ans:	Ideal-solutions1They Obey Raoult's law at all temperature and pressure	Non-ideal solutions They do not obey Raoult's law.		
	$\begin{array}{c c} \hline 2 & \Delta H_{mix} = 0. \end{array}$	ΔH _{mix} ≠0		
	$3 \Delta V_{mix} = 0.$	$\Delta V_{mix} \neq 0.$		
	4 $P_{\text{total}} = P_A^0 \chi_A + P_B^0 \chi_B$	$P_{total} \neq P_A^0 \chi_A + P_B^0 \chi_B$		3
	5 Intermolecular attractive forces between A-A, B-B and A-B are same.	Intermolecular attractive for between A-A, B-B and A-B are same.	rces not	
		(Any three; for each 1 man	rk)	
34)	Mention any 3 factors which affect elec	ctrolytic (ionic) conductivity.		
Ans:	1. the nature of the electrolyte added	5. viscosity of solvent		
	2. size of the ions produced	6. concentration of the electrolyte	3	3
	3. size of solvated ions	7. temperature.		
	4. the nature of the solvent	(Any Three; 1 mark for each)	
35)	Explain the construction and workin	g of Standard Hydrogen Electr	ode	
	[SHE].		_	
Ans:	Construction: It consists of a platinum f	oil fitted into a glass tube		
	containing mercury.			
	The inner glass tube is enclosed in an outer jar that contains an inlet at the \succ			1
	top to pass hydrogen gas. The whole apparatus is placed in 1M HCl solution.			
	Working: Hydrogen gas passed is adsorbed on platinum surface.			
	At anode: $\frac{1}{2}H_{2(g)} \rightarrow H^{+}_{(aq)} + e^{-}$	-		1
	(or)			T
	At cathode: $H^+_{(aq)} + e^- \rightarrow \frac{1}{2} H_{2(g)}$	-		
	H ₂ (g) at 1 bar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(Any two labelling 1 mark)]	1

36)	Derive Integrated rate equation for the rate constant of first order reaction.	
Ans:	Consider the general first order reaction	
	$R \rightarrow Products$	
	Rate = $\frac{-d[R]}{dt} = k[R]$ (or) $\frac{d[R]}{[R]} = -k.dt$	1
	Integrate on both sides, we get	
	$\ln [\mathbf{R}] = -\mathbf{k} t + \mathbf{I}$	
	When, $t = 0$, then $\mathbf{R} = [\mathbf{R}]_0$ is the initial concentration of the reactant.	
	$\ln [\mathbf{R}]_0 = -\mathbf{k} \times 0 + \mathbf{I}$	
	$\ln [\mathbf{R}]_0 = \mathbf{I}$	1
	Substitute the value of I in the above equation.	
	$\ln [\mathbf{R}] = -\mathbf{k} t + \ln [\mathbf{R}]_0$	
	Rearrange,	
	$\ln \frac{[\mathbf{R}]}{[\mathbf{R}]_0} = -kt$	
	$k = \frac{1}{t} \ln \frac{[\mathbf{R}]_0}{[\mathbf{R}]} \text{(or)} \mathbf{k} = \frac{2.303}{t} \log \frac{[\mathbf{R}]_0}{[\mathbf{R}]}$	1
	(or)	(or)
	Consider the general first order reaction	
	$A \rightarrow Products$	
	Rate = $\frac{-d[A]}{dt} = k[A]$ (or) $\frac{d[A]}{[A]} = -k.dt$	1
	Integrate on both sides, we get	
	Integrate on both sides, we get	
	$\ln \left[\mathbf{A} \right] = -\mathbf{k} t + \mathbf{I}$	
	When, $t = 0$, then $A = [A]_0$ is the initial concentration of the reactant.	
	$\ln [A]_0 = -k \times 0 + I$	
	$\ln [A]_0 = I$	1
	Substitute the value of I in above equation.	
	$\ln \left[\mathbf{A} \right] = -\mathbf{k} \ t + \ln \left[\mathbf{A} \right]_0$	
	$ln [A] = -k t + ln [A]_0$ Rearrange,	
	$\ln [A] = -k t + \ln [A]_0$ Rearrange, $\ln \frac{[A]}{[A]_0} = -k t$	
	$\ln [A] = -k t + \ln [A]_0$ Rearrange, $\ln \frac{[A]}{[A]_0} = -k t$ $k = \frac{1}{t} \ln \frac{[A]_0}{[A]} (\text{or}) \qquad k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$	1

43) a)	Write the Haworth structure of Maltose.	
b)	What is denaturation of protein? Which structure of proteins remains intact during denaturation?	
c)	Name the iodinated derivative hormone produced in thyroid gland.	
Ans:	CH ₂ OH CH ₂ OH	
a)	H H H H H H H H H H H H H H H H H H H	2
b)	The process of loss of biological activity of a protein by heating (changing temperature) or by adding chemical (changing pH) is called denaturation of protein.	1
	Primary structure remains intact during denaturation.	1
c)	Thyroxine	1
	PART – E (Problems)	
VII.	Answer any three of the following. Each question carries three 3×3 marks.	3 = 9
44)	The boiling point of benzene is 353.23 K when 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K. Calculate the molar mass of the solute (K_b for benzene is 2.53 K Kg mol ⁻¹).	
Ans:	$\Delta T_{b} = \frac{K_{b} \times W_{2} \times 1000}{W_{1} \times M_{2}} \qquad (or) \qquad M_{2} = \frac{K_{b} \times W_{2} \times 1000}{W_{1} \times \Delta T_{b}}$	1
	$=\frac{2.53\times1.80\times1000}{90\times0.88}$	1
	$= 57.5 \mathrm{g} /\mathrm{mol}(\mathrm{or})57.5 \mathrm{gmol}^{-1}$	1
45)	Vapour pressure of compound 'A' (molar mass 120 g/mol) and compound 'B' (molar mass 85g/mol) at 298 K are 200 mm Hg and 415 mm Hg respectively. Calculate the vapour pressure of the solution prepared by mixing 26.0 g of compound 'A' and 40 g of compound 'B' at 298 K.	
Ans:	Mole fraction of compound B(χ_{B}) = $\frac{n_{B}}{n_{A} + n_{B}} = \frac{\frac{40}{85}}{\frac{26}{120} + \frac{40}{85}} = \frac{0.47}{0.216 + 0.47} = 0.685$	1
	$P_{total} = p_A^0 + (p_B^0 - p_A^0) \chi_B$	1
	=200+(415-200)0.685=347.27 mm Hg	1
1		1

46)	For a cell in which the following reaction takes place:	
	$Mg_{(s)} + 2Ag^+_{(0.0001M)} \rightarrow Mg^{2+}_{(0.130M)} + 2Ag_{(s)}$ at 298 K.	
	Calculate its E_{cell} if $E^{o}_{cell} = 3.17$ V and the cell can be written as	
	$Mg Mg^{2+}_{(0.130M)} Ag^{+}_{(0.0001M)} Ag.$	
Ans:	$E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log \frac{[Mg^{+2}]}{[Ag^{+}]^{2}} (or) \qquad E_{cell} = E_{cell}^{o} - \frac{2.303RT}{nF} \log \frac{[Mg^{+2}]}{[Ag^{+}]^{2}}$	1
	$E_{cell} = 3.17 - \frac{0.059}{2} \log \frac{[0.130]}{[0.0001]^2}$	
	$E_{cell} = 3.17 - \frac{2.303 \times 8.314 \times 298}{2 \times 96487} \log \frac{[0.130]}{[0.0001]^2}$	1
	$E_{cell} = 3.17 - 0.21 = 2.96 V$	1
47)	The conductivity of 0.001 mol L ⁻¹ acetic acid is 4.95×10^{-5} S cm ⁻¹ . Calculate its degree of dissociation. λ_m^{o} for acetic acid is 390.5 S cm ² mol ⁻¹ .	
Ans:	$\lambda_{\rm m} = \frac{{\rm K} \times 1000}{{\rm C}}$	1
	$=\frac{4.95\times10^{-5}\times1000}{0.001}=49.5\mathrm{Scm^{2}mol^{-1}}$	1
	$\alpha = \frac{\lambda_{\rm m}}{\lambda_{\rm m}^{0}} = \frac{49.5}{390.5} = 0.1267$	1
48)	A first order reaction takes 40min for 30% decomposition. Calculate $t_{\prime _2}$ (half-life period).	
Ans:	$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]} \qquad \text{(or)} \qquad k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
	$k = \frac{2.303}{40} \times \log\left[\frac{100}{100 - 30}\right] = \frac{2.303}{40} \times \log\left[\frac{10}{7}\right] = 8.918 \times 10^{-3} \operatorname{min}^{-1} (\mathbf{or}) \ 1.4 \times 10^{-4} \ \mathrm{s}^{-1}$	1
	$t_{\frac{1}{2}} = \frac{0.693}{k}$	
	$=\frac{0.693}{8.918 \times 10^{-3}} = 77.7 \text{min} \qquad \text{(or)} \qquad \cong 4662 \text{ seconds}$	1
	(Any alternative method with correct answer and unit marks should be awarded)	

49)	The rate constants of a reaction at 500K and 700K are $0.02S^{-1}$ and $0.07S^{-1}$ respectively. Calculate the value of E_a .	
Ans:	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
	$\log \frac{0.07}{0.02} = \frac{E_{a}}{2.303 \times 8.314} \left[\frac{700 - 500}{700 \times 500} \right] \text{ (or) } E_{a} = \frac{2.303 \times 8.314 \times 0.5441 \times 700 \times 500}{200}$	1
	$E_a = 18231 \text{ J} (\textbf{or}) \qquad E_a = 18.231 \text{ kJ} (\textbf{or}) \qquad E_a = 18.231 \text{ kJ/mol}$ (Any alternative method with correct answer and unit marks should be awarded)	1

********END********