KARNATAKA SCHOOL EXAMINATION \& ASSESSMENT BOARD II PUC EXAMINATION - 1 MARCH - 2024					
SUBJECT: CHEMISTRY		MODEL ANSWERS	SUBJECT CODE:		
PART-A					
I.	Select the correct	the given ch			
1)	If the process of dissolution of a solid in liquid is an endothermic, its solubility; a) decrease with increase in temperature b) remains same at all temperature c) increase with increase in temperature d) increase with decrease in temperature				
Ans:	c) increase with in increase with in	temperature OR Omperature			1
2)	When the concentration of electrolytic solution approaches zero, the resulting molar conductivity is known as; a) specific conductance b) resistivity c) conductivity d) limiting molar conductivity				

7)	The stereoisomers related to each other as non-superimposable mirror images are called; a) Enantiomers b) Diastereomers c) Anomers d) Racemic mixture	
Ans:	a) Enantiomers OR a) OR Enantiomers	
8)	Anisole on treatment with $\mathrm{CH}_{3} \mathrm{Cl}$ in the presence of anhydrous AlCl_{3} gives; a) Toluene b) o-chloroanisole c) Ortho and para-methylanisoles d) p-chloroanisole	
Ans:	$\begin{array}{cccc}\text { c) Ortho and para-methylanisoles } & \text { OR } & \text { c) } & \text { OR } \\ \text { Ortho and para-methylanisoles }\end{array} \quad 4$	1
9)	The enzyme which can catalyse the conversion of glucose to ethanol is; a) Invertase b) Maltase c) Zymase d) Sucrase	
Ans:	c) Zymase OR ${ }^{\text {c) }}$ OR OR Zymase	1
10)	Nucleophilic attack on carbonyl carbon atom changes its hybridization from; a) sp to sp^{2} b) sp^{2} to sp^{3} c) sp^{3} to sp^{2} d) sp to sp^{3}	
Ans:		1
11)	Decarboxylating reagent is a mixture of; a) Alc. $\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}_{2}$ b) $\mathrm{NaOH}+\mathrm{CO}_{2}$ c) $\mathrm{NaOH}+\mathrm{CaO}$ d) Conc. $\mathrm{HCl}+\mathrm{ZnCl}_{2}$	
Ans:	c) $\mathrm{NaOH}+\mathrm{CaO} \quad$ OR \quad c) $\mathrm{OR} \quad \mathrm{NaOH}+\mathbf{C a O}$	1
12)	To prepare p-Nitroaniline as a major product from aniline, the amino group is protected by; a) Acetylation b) Alkylation c) Saponification d) Sulphonation	
Ans:	a) Acetylation OR a) OR Acetylation	1
13)	The reagents used to separate the mixture of methylamine and dimethylamine are; a) CHCl_{3} and HCl b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$ and KOH c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$ and HCl d) CHCl_{3} and KOH	
Ans:	b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$ and KOH $\quad \mathrm{OR} \quad$ b) $\mathrm{OR} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathbf{C l}$ and KOH	1
14)	The carbohydrate which is also known as animal starch and stored in animal body is; a) Starch b) Sucrose c) Glycogen d) Cellulose	
Ans:	c) Glycogen OR \quad c) OR Glycogen	1
15)	Which vitamin deficiency causes the disease cheilosis? a) Vitamin B_{1} b) Vitamin B_{2} c) Vitamin B_{6} d) Vitamin B_{12}	
Ans:	$\begin{array}{lllll}\text { b) Vitamin } \mathbf{B}_{2} & \text { OR } & \text { b) } & \text { OR }\end{array}$	1

23) a) b)	What is spectrochemical series? Between $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ complex ions, which is more stable?	
Ans: a)	Ligands can be arranged in a series in the order of increasing field strength is termed as spectrochemical series. OR Arrangement of ligands in increasing or decreasing order in their field strength is termed as spectrochemical series. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is more stable.	1
24)	Write the IUPAC name of product obtained when ethyl bromide reacts with sodium iodide in dry acetone. Name the reaction.	
Ans:	IUPAC Name: iodoethane. Reaction name: Finkelstein reaction.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
25)	Explain Haloform reaction with chemical equation.	
Ans:	Aldehydes and ketones having at least one methyl group (α - methyl group) linked to the carbonyl carbon atom (methyl ketones) are oxidised (oxidative degradation) by sodium hypohalite to sodium salts of corresponding carboxylic acids and haloform. This reaction is called Haloform reaction.	1 1 OR 2
26)	Name two hormones which regulate the glucose level in the blood.	
Ans:	Insulin Glucagon	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	PART - C	
IV.	Answer any three of the following. Each question carries $\mathbf{3}$ marks. $\mathbf{3 \times 3}$	
27)	Write the balanced chemical equations in the manufacture of potassium dichromate from chromite ore.	
Ans:	Step 1: $4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}$ Step 2: $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ or $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$ Step 3: $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{NaCl} \quad$ One mark for each step	1 1 1

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
28) a) \\
i) \\
ii) \\
b)
\end{tabular} \& \begin{tabular}{l}
Give a reason for each of the following: \\
The spin only magnetic moment of \(\mathrm{Sc}^{3+}\) is zero. \\
Alloys are readily formed by transition metals. \\
Write the structure of manganate ion (\(\mathrm{MnO}_{4}{ }^{2-}\)).
\end{tabular} \& \\
\hline \begin{tabular}{l}
Ans:a) i) \\
ii) \\
b)
\end{tabular} \& \begin{tabular}{l}
Due to absence of unpaired electrons. \\
Very small difference in atomic size. OR Similar radii and other characteristics of transition metals, alloys are readily formed by transition metals. \\
manganate ion
\end{tabular} \& 1
1
1 \\
\hline 29) \& What is Lanthanoid Contraction? Mention two consequences of it. \& \\
\hline Ans: \& \begin{tabular}{l}
The overall decrease in atomic radii and ionic radii from lanthanum to lutetium (across lanthanoids) is called Lanthanoid contraction. \\
Consequences: \\
1. The separation of lanthanoids in pure state becomes difficult. OR Difficulty in separation of lanthanoids due to similar chemical properties. \\
2. The atomic radii of \(3^{\text {rd }}\) row transition series elements are almost similar to that of \(2^{\text {nd }}\) row transition series elements. \\
OR \\
The identical radii of Zirconium (Zr) and Hafnium (Hf). \\
Any correct consequences: 1 mark for each
\end{tabular} \& \\
\hline \begin{tabular}{l}
30) a) \\
b)
\end{tabular} \& \begin{tabular}{l}
Draw the geometrical isomers of \(\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]\). \\
Give an example for ambidentate ligand.
\end{tabular} \& \\
\hline \begin{tabular}{l}
Ans: a) \\
b)
\end{tabular} \& \& 1
+
1

1 \\
\hline 31) \& On the basis of Valence Bond Theory [VBT], explain geometry, hybridisation and magnetic property of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ ion. [Atomic number of cobalt is 27) \& \\
\hline
\end{tabular}

Ans:	In $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$; the cobalt ion is in +3 oxidation state. The electronic configuration of $\mathrm{Co}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$. Orbitals of Co^{3+} ion are represented as When six strong NH_{3} ligand is approaching central metal ion, rearrangement of electrons takes place. Two d-orbitals, one s-orbital and three p-orbitals undergo hybridization to form six $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybrid orbitals of cobalt. These six hybridised orbitals of Co^{3+} overlaps with orbitals of six ammonia ligands form six coordinate bonds. six $d^{2} s p^{3}$ hybrid orbitals six pairs of electrons on NH3 ligand The complex has octahedral geometry. diamagnetic because of the absence of unpaired electron. OR Hybridisation: $\mathbf{d}^{2} \mathbf{s p}^{3}$ Geometry: octahedral Magnetic property: diamagnetic	
$\begin{aligned} & \text { 32) } \\ & \text { a) } \\ & \text { b) } \end{aligned}$	Draw the energy level diagram for the splitting of d-orbitals in an octahedral crystal field. If $\Delta_{o}<P$, on the basis of crystal field theory [CFT]. Write the electronic configuration of d^{4} - ion in octahedral complexes.	

\begin{tabular}{|c|c|c|}
\hline V \& Answer any two of the folowing. Each question carries \(\mathbf{3}\) marks: \(\quad 2 \times 3\) \& \\
\hline \begin{tabular}{l}
33) a) \\
b)
\end{tabular} \& What is reverse osmosis? Mention one of its application. State Henry's Law. \& \\
\hline Ans: a) \& \begin{tabular}{l}
The phenomenon of the flow of solvent molecules from solution to the pure solvent through semi permeable membrane by applying more pressure than osmotic pressure (in opposite direction or on solution side). \\
Desalination of Sea water. \\
"The partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution". \\
OR \\
"At a constant temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution". \\
"The solubility of a gas at a given temperature is directly proportional to the pressure at which it is dissolved".
\end{tabular} \& 1
1

1 \\
\hline 34) \& Draw a neat labelled diagram of Standard Hydrogen Electrode (SHE). Write its half-cell reaction. \& \\
\hline Ans: \& \& 2 \\
\hline 35) \& Write the anodic, cathodic and overall reactions of corrosion of iron occurs in the presence of water and air. \& \\

\hline Ans: \& | $\begin{array}{\|lc} \hline \text { At anode: } & \mathrm{Fe}(\mathrm{~s}) \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \text { OR } \quad 2 \mathrm{Fe}_{(\mathrm{s})} \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+4 \mathrm{e}^{-} \\ \text {At cathode: } & 4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}$ |
| :--- |
| The overall reaction: $2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ | \& 1

1
1 \\
\hline 36) \& Derive Integrated rate equation for rate constant of a zero-order reaction. \& \\

\hline Ans: \& | Consider a zero-order reaction, $\mathrm{R} \rightarrow \mathrm{P}$ |
| :--- |
| $[R]_{0}=$ Initial concentration of the reactant. |
| $[R]=$ Concentration of the reactant at any time. | \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 38) a) \& \begin{tabular}{l}
Write the three reactions involved in the mechanism of acid catalysed dehydration of ethanol to ethene. \\
What is Lucas reagent? Which class of alcohols does not readily form turbidity with Lucas reagent?
\end{tabular} \& \\
\hline Ans: a) \& \begin{tabular}{l}
Step1: \\
Step2: \\
Step3: \\
Ethene \\
One mark for each step \\
Lucas reagent: conc. HCl and \(\mathrm{ZnCl}_{2}\) (anhydrous zinc chloride) \\
Primary Alcohol OR \(1^{0}\) - alcohols
\end{tabular} \& 1
1
1
1
1
1
1 \\
\hline 39) a)
b)

c) \& | Write the chemical equations in the manufacture of phenol by Cumene process. |
| :--- |
| Complete the equation. |
| Explain Williamson's reaction for the preparation of methoxymethane. | \& \\

\hline Ans: a) \& \& 1
+
1

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline c) \& When methyl halide (halomethane) reacts with sodium methoxide (in alcoholic medium) gives methoxymethane. This reaction is called Williamson's reaction. \& (1 \\
\hline \begin{tabular}{l}
40) a) \\
b) \\
c)
\end{tabular} \& \begin{tabular}{l}
How does methanal react with hydroxylamine? Explain with equation. Identify \(A\) and \(B\) in the following reaction. \\
Write any one reagent used to distinguish between aldehyde and ketone.
\end{tabular} \& \\
\hline Ans:
a)

b)

b) \& \begin{tabular}{l}
When methanal reacts with hydroxyl amine gives oxime. \\
Self-explanatory equation = 2 mark \\
$B=$ or propane Tollens' reagent OR Fehling's reagent any one correct answer

 \&

1 \\
1 \\
OR \\
2 \\
1 \\
1 \\
1
\end{tabular} \\

\hline 41) a)
i)
ii)

b) \& | When methyl magnesium iodide reacts with dry ice forms an intermediate, which on acidification gives compound ' A '. |
| :--- |
| Write the equation for the above chemical reaction. |
| Write the IUPAC name of compound 'A'. |
| Between acetic acid and monochloroacetic acid, which is more acidic? Give reason. | \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Ans: a) \\
i) \\
ii) \\
b)
\end{tabular} \& \begin{tabular}{l}
A = Ethanoic acid \\
Monochloroacetic acid is stronger acid than acetic acid. \\
Because -Cl group shows -I effect \(\mathbf{O R}\) negative inductive effect OR -Cl group is electron withdrawing group
\end{tabular} \& 2
1
1
1 \\
\hline \begin{tabular}{l}
42) a) \\
b)
\end{tabular} \& \begin{tabular}{l}
Write the chemical equations involved in the Gabriel phthalimide synthesis of methanamine. \\
Explain the coupling reaction of Benzene diazonium chloride with phenol using chemical equation.
\end{tabular} \& \\
\hline Ans:
a)

b) \& | Benzene diazonium chloride reacts with phenol to give azo dyes. These reactions are called coupling reactions. |
| :--- |
| OR |
| Self-explanatory equation $=\mathbf{2}$ mark | \& 3

1
1
Or

2 \\

\hline | 43) a) |
| :--- |
| b) i) |
| ii) |
| c) | \& | Write the Haworth structure of sucrose. |
| :--- |
| What are essential amino acids? |
| Give an example for fibrous proteins. |
| Name the nitrogenous base present in DNA but not in RNA. | \& \\

\hline | Ans: |
| :--- |
| a) | \& \& 2 \\

\hline
\end{tabular}

b) i) ii) c)	The amino acids which are not synthesized in the body but provided in the diet are called essential amino acids. Keratine (protein present in hair, wool or silk), myosin (protein present in musles) any one correct answer Thymine OR T	1 1 1
	PART - E	
V.	Answer any three of the following. Each question carries 3 marks. $\quad 3 \times 3$	
44)	Calculate the mole fraction of benzene in a solution containing $\mathbf{3 0 \%}$ by mass in carbon tetrachloride. (Molar mass of benzene $=78 \mathrm{~g} / \mathrm{mol}$, molar mass of carbon tetrachloride $=154 \mathrm{~g} / \mathrm{mol}$)	
Ans:	30% by mass benzene in carbon tetrachloride solution means 30 g benzene present in 70 g of carbon tetrachloride. $\text { Number of moles }=\frac{\text { mass of the compound }}{\text { molar mass of the compound }}$ Number of moles of $\mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{n}_{\mathrm{a}}=\frac{30}{78}=0.38 \quad$ Number of moles of $\mathrm{CCl}_{4}=\mathrm{n}_{\mathrm{b}}=\frac{70}{154}=0.45$ \therefore mole fraction of benzene $=\frac{n_{a}}{n_{a}+n_{b}}$ mole fraction of benzene $=\frac{0.38}{0.38+0.45}=0.46$ OR 0.458	1 1 1
45)	1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene by 0.40 K . the freezing point depression constant of benzene is $5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. Find the molar mass of the solute.	
Ans:	$\begin{array}{cc} \mathrm{M}_{2}=\frac{1000 \times \mathrm{k}_{\mathrm{f}} \times \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{f}} \times \mathrm{W}_{1}} & \text { OR } \quad \mathrm{M}_{\mathrm{B}}=\frac{\mathrm{K}_{\mathrm{f}} \times \mathrm{w}_{\mathrm{B}} \times 1000}{\Delta \mathrm{~T}_{\mathrm{f}} \times \mathrm{w}_{\mathrm{A}}} \\ \mathrm{M}_{2}=\frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50} \\ \mathbf{M}_{2}= & 256 \mathrm{~g} \mathrm{~mol}^{-1} \end{array}$	1 1 1
46)	Calculate the emf of the cell in which the following reactions takes place: $\mathrm{Ni}_{(\mathrm{s})}+2 \mathrm{Ag}^{+}(0.002 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}{ }_{(0.160 \mathrm{M})}+2 \mathrm{Ag}_{(\mathrm{s}) .} \quad \text { Given } \mathrm{E}^{0} \text { cell }=1.05 \mathrm{~V} \text { at } 298 \mathrm{~K} .$	
Ans:	$\begin{aligned} & \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{0 \cdot 0591}{\mathrm{n}} \log \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \quad \text { OR } \quad \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \\ & \mathrm{E}_{\text {cell }}=1.05-\frac{0.059}{2} \log \frac{0.16}{(0.002)^{2}} \quad \text { OR } \quad \mathrm{E}_{\text {cell }}=1.05 \mathrm{~V}-\frac{2.303 \times 8.314 \times 298}{2 \times 96487} \log \frac{[0.16]}{[0.002]^{2}} \\ & \mathrm{E}_{\text {cell }}=1.05-0.1358 \\ & \mathrm{E}_{\text {cell }}=0.914 \mathrm{~V} \end{aligned}$	1 1 1

\begin{tabular}{|c|c|c|}
\hline 47) \& A solution of \(\mathrm{CuSO}_{4}\) is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode? [Molar mass of copper \(=63 \mathrm{~g} / \mathrm{mol} .1 \mathrm{~F}=96487 \mathrm{C}\)] \& \\
\hline Ans: \& \begin{tabular}{l}
\[
\mathrm{Q}=\mathrm{It}=1.5 \times 10 \times 60=900 \mathrm{C}
\] \\
Charge required to deposit one mole of Copper from \(\mathrm{Cu}^{+2}\) ion is \(2 \mathrm{~F}=2 \times 96487 \mathrm{C}\)
\[
\therefore \quad \text { Mass of copper deposited }=\frac{63 \times 900}{2 \times 96487}=0.29 \mathrm{~g}
\] \\
OR
\[
\mathrm{W}=\mathrm{ZIt}
\] \\
\(\mathrm{Z}=\) Electrochemical Equivalent of copper
\[
\begin{gathered}
\text { Equivalent mass of } \mathrm{Cu}=\frac{\text { Molecular mass }}{\text { Valency }}=\frac{63}{2}=31.5 \\
\mathrm{Z}=\frac{\text { Equivalent Mass }}{96487} \\
\therefore \mathrm{~W}=\mathrm{ZIt}=\frac{31.5 \times 1.5 \times 10 \times 60}{96487}=0.29 \mathrm{~g}
\end{gathered}
\]
\end{tabular} \& 1
1
1
OR

1
1
1 \\
\hline 48) \& A first order reaction has a rate constant $1.15 \times 10^{-3} \mathrm{~s}^{\mathbf{- 1}}$. How long will 5 g of this reactant take to reduce to 3 g ? \& \\

\hline Ans: \& $$
\begin{aligned}
& t=\frac{2.303}{k} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]} \\
& t=\frac{2.303}{1.5 \times 10^{-3}} \times \log \frac{5}{3} \\
& t=443.8 \text { Seconds. OR } \quad t=444 \mathrm{~s}
\end{aligned}
$$ \& 1

1
1 \\
\hline 49) \& The rate of chemical reaction quadruples for an increase of temperature from 293 K to 313 K . Calculate energy of activation of the reaction assuming that it does not change with temperature. \& \\

\hline Ans: \& $$
\begin{array}{rll}
\hline \text { Given: } \mathrm{K}_{2}=4 \mathrm{~K}_{1} ; \quad \mathrm{T}_{1}=293 \mathrm{~K} ; & \mathrm{T}_{2}=313 \mathrm{~K} \quad \& \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
\log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}= & \frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left[\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right] \\
& \because \mathrm{k}_{2}=4 \mathrm{k}_{1}
\end{array} \quad \begin{aligned}
\log 4=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{313-293}{293 \times 313}\right] & \text { OR } \quad \mathrm{E}_{\mathrm{a}}=\frac{\log 4 \times 2.303 \times 8.314 \times 293 \times 313}{20} \\
\mathrm{E}_{\mathrm{a}}=52864 \mathrm{~J} & \text { OR } \quad 52.864 \mathrm{~kJ}
\end{aligned}
$$ \& 1

1
1 \\
\hline
\end{tabular}

