KARNATAKA SCHOOL EXAMINATION & ASSESSMENT BOARD II PUC EXAMINATION - 1 MARCH – 2024

SUBJECT: CHEMISTRY

MODEL ANSWERS

SUBJECT CODE: 34

PART-A				
I.	Select the correct option from the	e given choices:	15 × 1=15	
1)	If the process of dissolution of a sol	lid in liquid is an endothermic, its so	lubility;	
	a) decrease with increase in temperative	ature b) remains same at all tempe	erature	
	c) increase with increase in tempera	ture d) increase with decrease in	temperature	
Ans:	c) increase with increase in tempe	erature OR c)	OR 1	1
	increase with increase in tempe	rature		•
2)	When the concentration of electroly conductivity is known as;	tic solution approaches zero, the resu	ulting molar	
	a) specific conductance	b) resistivity		
	c) conductivity	d) limiting molar cond	uctivity	
Ans:	d) limiting molar conductivity	OR d) OR limiting molar c	onductivity ¹	1
3)	During discharging of lead storage	battery, the correct half-cell reaction	n is;	
	a) At anode, Pb is converted into PbO	b) At anode, Pb is converted in	nto PbSO ₄	
	c) At anode, PbO is converted into Pb	SO ₄ d) At cathode, Pb is converted	into PbSO ₄	
Ans:	b) At anode, Pb is converted into	PbSO ₄ OR b)	OR ¹	1
	At anode, Pb is converted into Pb	SO4		
4)	The catalyst in a chemical reaction mechanism by decreasing:	on provides an alternate pathway	or reaction	
	a) Activation energy	b) Kinetic energy		
	c) Normal energy of reacting specie	d) Potential energy		
Ans:	a) Activation energy OR a)	OR Activation energy	1	1
5)	Which of the following pair of meta	al oxides are amphoteric?		
	a) V_2O_5 , Cr_2O_3	b) Mn ₂ O ₇ , CrC)3	
	c) V_2O_5, V_2O_4	d) CrO, V ₂ O ₅		
Ans:	a) V ₂ O ₅ , Cr ₂ O ₃ OR	a) OR V_2O_5 , Cr_2O_3	, 1	1
6)	The correct IUPAC name of [Pt(N]	$H_{3})_{2}Cl_{2}]$ is;		
	a) Diamminedichloridoplatinum (II	b) Dichloridodiammineplatinu	ım (0)	
	c) Dichloridodiammineplatinate (II)) d) Diamminedichloridoplatina	te (0)	
Ans:	a) Diamminedichloridoplatinum	(II) OR a)	OR	1
	Diamminedichloridoplatinum	(II)		1

7)	The stereoisomers related to each other as non-superimposable mirror images are called;					
	a) Enantiomers	b) Diastereomers	s c)	Anomers	d) Racemic mixture	
Ans:	a) Enantiomers	OR		a) O	DR Enantiomers	
8)	Anisole on treatm	nent with CH ₃ Cl in	the pre	esence of an	nhydrous AlCl ₃ gives;	
	a) Toluene			b) o-ch	loroanisole	
	c) Ortho and para	-methylanisoles		d) p-chl	oroanisole	
Ans:	c) Ortho and par	ra-methylanisoles		OR	c) OR	1
	Ortho and pa	ra-methylanisoles	5			_
9)	The enzyme whic	ch can catalyse the	conver	sion of glu	cose to ethanol is;	
	a) Invertase	b) Maltase	c)	Zymase	d) Sucrase	
Ans:	c) Zymase	OR	c)	OR	Zymase	1
10)	Nucleophilic atta	ck on carbonyl carl	oon ato	m changes	its hybridization from;	
	a) sp to sp^2	b) sp^2 to sp^3	c)	sp^3 to sp^2	d) sp to sp^3	
Ans:	b) sp ² to sp ³	OR	b)	OR	sp ² to sp ³	1
11)	Decarboxylating	reagent is a mixtur	e of;			
	a) Alc. KOH + H	I_2O_2		b) NaO	$H + CO_2$	
	c) NaOH + CaO			d) Conc	c. $HCl + ZnCl_2$	
Ans:	c) NaOH + CaO	OR	c)	OR	NaOH + CaO	1
12)	To prepare p-Nit	troaniline as a ma	jor pro	duct from	aniline, the amino group is	
	protected by;					
	a) Acetylation	b) Alkylation	c)	Saponificat	tion d) Sulphonation	
Ans:	a) Acetylation	OR	a)	OR	Acetylation	1
13)	The reagents used	d to separate the mi	xture o	of methylan	nine and dimethylamine are;	
	a) CHCl ₃ and HC	C1	b) C ₆ I	H ₅ SO ₂ Cl an	nd KOH	
	c) $C_6H_5SO_2Cl$ and	d HCl	d) CH	ICl ₃ and K	ОН	
Ans:	b) C ₆ H ₅ SO ₂ Cl an	nd KOH OR	b)	OR	C ₆ H ₅ SO ₂ Cl and KOH	1
14)	The carbohydrate	which is also know	vn as a	nimal starc	h and stored in animal body is	;
	a) Starch	b) Sucrose	c) G	lycogen	d) Cellulose	
Ans:	c) Glycogen	OR	c)	OR	Glycogen	1
15)	Which vitamin de	eficiency causes the	e diseas	se cheilosis	:?	
	a) Vitamin B ₁	b) Vitamin B ₂		c) Vitamin	B_6 d) Vitamin B_{12}	
Ans:	b) Vitamin B ₂	OR	b)	OR	Vitamin B ₂	1
	, <u></u>		/		-	1

II.	Fill in the blanks by choosing the appro brackets: [ionic charge, Grignard frequency, Molality, Molarity]	priate word from those given in the reagent, $C_6H_5N_2^+Cl^-$, Collision5 ==	× 1 : 5
16)	The number of moles of solute present i	in one kilogram of the solvent is called	
Ans:	Molality		
17)	The number of collisions per second per unit volume of the reaction mixture is		
	known as		
Ans:	Collision frequency		1
18)	Transition metals form large number of co	omplex compounds due to high	
Ans:	ionic charge		1
19)	The common name of alkyl magnesium h	alide is	
Ans:	Grignard reagent		1
20)	The formula of benzenediazonium chlorid	le is	
Ans:	$C_6H_5N_2^+Cl^-$		1
	PAR	Г - В	
III.	Answer any three of the following. Eacl	h question carries 2 marks. $3 \times 2 =$	= 6
21)	What type of deviation from Raoult's law is observed, when equal volume of		
	ethanol and acetone are mixed together	? Mention the reason for it.	
Ans:	Positive deviation from Raoult's law	OR $+^{ve}$ deviation.	1
	In pure ethanol molecules are hydrogen b get in between the ethanol molecules and b The ethanol - acetone shows weaker interaction. OR Due to weaker inter $F_{A-B} < F_{A-A} \& F_{B-B}$	onded. On adding acetone, its molecules break hydrogen bonds between them. OR interaction than pure ethanol-ethanol action between solute and solvent. OR	1
22)	Mention any two differences between or	rder and molecularity of a reaction.	
Ans:	Order of a reaction	Molecularity of a reaction	
	The sum of the powers concentration terms of reactants in the experimentally determined rate equation.	It is the number of reacting species involved in elementary or simplest reaction.	
	It is experimentally determined.	It is theoretically calculated.	
	It can be zero and even a fraction.	It cannot be zero or a non-integer.	1
	Order is applicable to elementary as well as complex reactions	Molecularity is applicable only for elementary reactions.	+
	For complex reaction, order is given by the slowest step.	Molecularity of the slowest step is same as the order of the overall reaction.	
	Any two correct answer; ONE MARK EACH		

23) a)	What is spectrochemical series?		
D)	Between [Co(en) ₃] ³⁺ and [Co(NH ₃) ₆] ³⁺ complex ions, which is more stable?	ļ	
Ans: a)	Ligands can be arranged in a series in the order of increasing field strength is termed as spectrochemical series. OR		
	Arrangement of ligands in increasing or decreasing order in their field strength is		
1-)	termed as spectrochemical series.		
D)	$[Co(en)_3]^{3+}$ is more stable.	1	
24)	Write the IUPAC name of product obtained when ethyl bromide reacts with		
	sodium iodide in dry acetone. Name the reaction.		
Ans:	IUPAC Name: iodoethane.	1	
	Reaction name: Finkelstein reaction.	1	
25)	Explain Haloform reaction with chemical equation.		
Ans:	Aldehydes and ketones having at least one methyl group (α – methyl group)		
	linked to the carbonyl carbon atom (methyl ketones) are oxidised (oxidative	1	
	degradation) by sodium hypohalite to sodium salts of corresponding carboxylic	I	
	acids and haloform. This reaction is called Haloform reaction.		
		1	
	$R \longrightarrow CH_3 \longrightarrow R \longrightarrow CNa + CHX_3 $ OR	OR	
	O O II		
	$R \longrightarrow CH_3 \longrightarrow R \longrightarrow CHX_3$	2	
	Aldehyde/ Ketone Sodium salt of Haloform Carboxylic acid	4	
	Any Suitable example OR Self-explanatory equation: 2M		
26)	Name two hormones which regulate the glucose level in the blood.		
Ans:	Insulin	1	
	Glucagon	1	
	PART - C		
IV.	Answer any three of the following. Each question carries 3 marks. 3×3	= 9	
27)	Write the balanced chemical equations in the manufacture of potassium dichromate from chromite ore.		
Ans:	Step 1: 4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \rightarrow 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂	1	
	Step 2: $2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O$ or		
	$2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O$	1	
	Step 3: $Na_2Cr_2O_7 + 2KCl \rightarrow K_2Cr_2O_7 + 2NaCl$ One mark for each step		

28) a)	Give a reason for each of the following:		
i)	The spin only magnetic moment of Sc ³⁺ is zero.		
b)	Alloys are readily formed by transition metals.		
	Write the structure of manganate ion (MnO ₄ ²⁻).		
Ans:a) i)	Due to absence of unpaired electrons.	1	
11)	Very small difference in atomic size. OR Similar radii and other		
	characteristics of transition metals, alloys are readily formed by transition metals.	1	
b)	$\bar{0}$		
0)	Mn		
	manganate ion		
29)	What is Lanthanoid Contraction? Mention two consequences of it.		
Ans:	The overall decrease in atomic radii and ionic radii from lanthanum to lutetium		
	(across lanthanoids) is called Lanthanoid contraction.		
	Consequences:		
	1. The separation of lanthanoids in pure state becomes difficult. OR		
	Difficulty in separation of lanthanoids due to similar chemical properties.		
	2. The atomic radii of 3 rd row transition series elements are almost similar to that		
	of 2 nd row transition series elements. OR		
	The identical radii of Zirconium (Zr) and Hafnium (Hf).		
	Any correct consequences: 1 mark for each		
30) a)	Draw the geometrical isomers of [CoCl ₂ (en) ₂].		
b)	Give an example for ambidentate ligand.		
Ans: a)	Clara		
		1	
	en Co en Co en	+	
	en Cl		
b)	nitrite ion (NO_2^{-}) ion, SCN ⁻ ion, CN ⁻ ion, etc (any one correct answer)	1	
31)	On the basis of Valence Bond Theory [VRT] explain geometry		
	hybridisation and magnetic property of $[Co(NH_3)_6]^{3+}$ ion. [Atomic number		
	of cobalt is 27)		

V	Answer any two of the following. Each question carries 3 marks: $2 \times 3 = 0$		
33) a) b)	What is reverse osmosis? Mention one of its application.		
Ans: a)			
	Solvent through semi permeable membrane by applying more pressure than osmotic pressure (in opposite direction or on solution side). Desalination of Sea water.		
b)	"The partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution". OR		
	"At a constant temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution". OR "The solubility of a gas at a given temperature is directly proportional to the pressure at which it is dissolved"		
34)	Draw a neat labelled diagram of Standard Hydrogen Electrode (SHE).		
	Write its half-cell reaction.		
Ans:	The half-cell reaction: $H_{(aq)}^{+} + e^{-} \longrightarrow \frac{1}{2}H_{2(g)}$ Labelled diagram =2 mark Diagram without labelling = 1M; Reaction = 1 M;	2	
35)	Write the anodic, cathodic and overall reactions of corrosion of iron occurs in the presence of water and air.		
Ans:	At anode: $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$ OR $2 Fe_{(S)} \longrightarrow 2 Fe^{2+}_{(aq)} + 4e^{-}$	1	
	At cathode: $4H^+(aq) + O_2(g) + 4e^- \longrightarrow 2H_2O(l)$	1	
	The overall reaction: $2 \operatorname{Fe}(s) + O_2(g) + 4 \operatorname{H}^+(aq) \longrightarrow 2 \operatorname{Fe}^{2+}(aq) + 2 \operatorname{H}_2O$	1	
36)	Derive Integrated rate equation for rate constant of a zero-order reaction.		
Ans:	Consider a zero-order reaction, $R \rightarrow P$		
	$[R]_0$ = Initial concentration of the reactant.		
	[R] = Concentration of the reactant at any time.		

c)	When methyl halide (halomethane) reacts with sodium methoxide (in alcoholic1medium) gives methoxymethane. This reaction is called Williamson's reaction.1		
	$H_3C \longrightarrow X + H_3C \longrightarrow H_3C \longrightarrow OCH_3$ OR	1	
	$R' \longrightarrow X + R \longrightarrow O R$ $R \longrightarrow O \longrightarrow R$	OR	
	Where R and R' are $-CH_3$ OR		
	$H_3C - X + H_3C - ONa^{\dagger} \rightarrow H_3C - O - CH_3$ methyl halide sodium methoxide methoxymethane Solf explanatory equation = 2 mark	2	
40) a)	How does methanal react with hydroxylamine? Explain with equation.		
b)	Identify A and B in the following reaction.		
	$H_3C \longrightarrow CH_3 + H_2N \longrightarrow NH_2 \longrightarrow A \xrightarrow{KOH/ethylene glycol} B + N_2$		
c)	Write any one reagent used to distinguish between aldehyde and ketone.		
Ans:	When methanal reacts with hydroxyl amine gives oxime.	1	
a)	$H \rightarrow C = O + H_2 N - OH \rightarrow H_2 C = N - OH OR OR$	1 OR	
	$H \rightarrow C = O + H_2N - OH \qquad Hydroxyl amine \qquad H_2O \rightarrow H$	2	
	Self-explanatory equation = 2 mark		
b)	$A = H_{3C} \longrightarrow NH_{2}$	1	
	$B = \begin{array}{c} H_3C \\ \hline \\ H_3C \end{array} CH_2 \text{ or propane}$	1	
c)	Tollens' reagentORFehling's reagentany one correct answer	1	
41) a) i)	When methyl magnesium iodide reacts with dry ice forms an intermediate, which on acidification gives compound 'A'.		
ii)	Write the equation for the above chemical reaction.		
	Write the IUPAC name of compound 'A'.		
b)	Between acetic acid and monochloroacetic acid, which is more acidic? Give reason.		

0)1)	The amino acids which are not synthesized in the body but provided in the diet are called essential amino acids		
ii)	Keratine (protein present in hair, wool or silk), myosin (protein present in musles)	1	
	any one correct answer	1	
c)	Thymine OR T		
V	PART - E	_ 0	
v.	Answer any three of the following. Each question carries 3 marks. $3 \times 3 =$	- 9	
44)	Calculate the mole fraction of benzene in a solution containing 30% by mass in carbon tetrachloride. (Molar mass of benzene = 78 g/mol, molar mass of carbon tetrachloride = 154 g/mol)		
Ans:	30% by mass benzene in carbon tetrachloride solution means 30 g benzene present in 70 g of carbon tetrachloride.		
	Number of moles = $\frac{\text{mass of the compound}}{\text{molar mass of the compound}}$		
	Number of moles of $C_6 H_6 = n_a = \frac{30}{78} = 0.38$ Number of moles of $CCl_4 = n_b = \frac{70}{154} = 0.45$	1	
	\therefore mole fraction of benzene $=\frac{n_a}{n_a + n_b}$	1	
	mole fraction of benzene = $\frac{0.38}{0.38 + 0.45} = 0.46$ OR 0.458	1	
45)	1.00g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene by 0.40 K. the freezing point depression constant of benzene is 5.12 K kg mol ⁻¹ . Find the molar mass of the solute.		
Ans:	$1000 \times k_f \times W_2$ $K_f \times W_B \times 1000$	-	
	$M_2 = \frac{1}{\Delta T_f \times W_1} \qquad OR \qquad M_B = \frac{1}{\Delta T_f \times W_A}$	1	
	$M_{2} = \frac{1}{\Delta T_{f} \times W_{1}} \qquad OR \qquad M_{B} = \frac{1}{\Delta T_{f} \times W_{A}}$ $M_{2} = \frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50}$	1	
	$M_{2} = \frac{1}{\Delta T_{f} \times W_{1}} \qquad OR \qquad M_{B} = \frac{1}{\Delta T_{f} \times W_{A}}$ $M_{2} = \frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50}$ $M_{2} = 256 \text{ g mol}^{-1}$	1 1 1	
46)	$M_{2} = \frac{1}{\Delta T_{f} \times W_{1}}$ $M_{B} = \frac{1}{\Delta T_{f} \times W_{A}}$ $M_{2} = \frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50}$ $M_{2} = 256 \text{ g mol}^{-1}$ Calculate the emf of the cell in which the following reactions takes place: $Ni_{(s)} + 2Ag^{+}_{(0.002M)} \rightarrow Ni^{2+}_{(0.160M)} + 2Ag_{(s)}.$ Given E ^o cell = 1.05 V at 298 K.	1 1 1	
46) Ans:	$M_{2} = \frac{1}{\Delta T_{f} \times W_{1}} \qquad OR \qquad M_{B} = \frac{1}{\Delta T_{f} \times W_{A}}$ $M_{2} = \frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50}$ $M_{2} = 256 \text{ g mol}^{-1}$ Calculate the emf of the cell in which the following reactions takes place: $Ni_{(s)} + 2Ag^{+}_{(0.002M)} \rightarrow Ni^{2+}_{(0.160M)} + 2Ag_{(s)}. \qquad \text{Given E}^{\circ} \text{ cell} = 1.05 \text{ V at } 298 \text{ K.}$ $E_{cell} = E_{cell}^{\circ} - \frac{0 \cdot 0591}{n} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}} \qquad OR \qquad E_{cell} = E_{cell}^{\circ} - \frac{2.303RT}{nF} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$	1 1 1 1	
46) Ans:	$M_{2} = \frac{1}{\Delta T_{f} \times W_{1}} \qquad OR \qquad M_{B} = \frac{1}{\Delta T_{f} \times W_{A}}$ $M_{2} = \frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50}$ $M_{2} = 256 \text{ g mol}^{-1}$ Calculate the emf of the cell in which the following reactions takes place: $Ni_{(s)} + 2Ag^{+}_{(0.002M)} \rightarrow Ni^{2+}_{(0.160M)} + 2Ag_{(s)}. \qquad \text{Given E}^{\circ} \text{ cell} = 1.05 \text{ V at } 298 \text{ K.}$ $E_{cell} = E_{cell}^{\circ} - \frac{0 \cdot 0591}{n} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}} \qquad OR \qquad E_{cell} = E_{cell}^{\circ} - \frac{2.303 \text{ RT}}{n\text{F}} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$ $E_{cell} = 1.05 - \frac{0.059}{2} \log \frac{0.16}{(0.002)^{2}} \qquad OR \qquad E_{cell} = 1.05 \text{ V} - \frac{2.303 \times 8.314 \times 298}{2 \times 96487} \log \frac{[0.16]}{[0.002]^{2}}$	1 1 1 1	
46) Ans:	$M_{2} = \frac{1}{\Delta T_{f} \times W_{1}} \qquad OR \qquad M_{B} = \frac{1}{\Delta T_{f} \times W_{A}}$ $M_{2} = \frac{5 \cdot 12 \times 1 \times 1000}{0 \cdot 4 \times 50}$ $M_{2} = 256 \text{ g mol}^{-1}$ Calculate the emf of the cell in which the following reactions takes place: $Ni_{(s)} + 2Ag^{+}_{(0.002M)} \rightarrow Ni^{2+}_{(0.160M)} + 2Ag_{(s)}. \qquad \text{Given E}^{0} \text{ cell} = 1.05 \text{ V at } 298 \text{ K}.$ $E_{cell} = E_{cell}^{0} - \frac{0 \cdot 0591}{n} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}} \qquad OR \qquad E_{cell} = E_{cell}^{0} - \frac{2.303RT}{nF} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$ $E_{cell} = 1.05 - \frac{0.059}{2} \log \frac{0.16}{(0.002)^{2}} \qquad OR \qquad E_{cell} = 1.05 \text{ V} - \frac{2.303 \times 8.314 \times 298}{2 \times 96487} \log \frac{[0.16]}{[0.002]^{2}}$ $E_{cell} = 1.05 - 0.1358$	1 1 1 1	

47)	A solution of CuSO ₄ is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode? [Molar mass of copper = 63 g/mol. 1F = 96487C]	
Ans:	$Q = It = 1.5 \times 10 \times 60 = 900C$	1
	Charge required to deposit one mole of Copper from Cu^{+2} ion is $2F = 2 \times 96487$ C	1
	Mass of copper deposited = $\frac{63 \times 900}{2 \times 96487} = 0.29 \text{ g}$	1
	OR	OR
	W = ZIt	
	Z = Electrochemical Equivalent of copper	
	Equivalent mass of $Cu = \frac{Molecular mass}{Valency} = \frac{63}{2} = 31.5$	1
	Z = Equivalent Mass	1
	96487	
	: W = ZIt = $\frac{31.5 \times 1.5 \times 10 \times 60}{96487}$ = 0.29 g	1
48)	A first order reaction has a rate constant 1.15×10^{-3} s ⁻¹ . How long will 5 g of this reactant take to reduce to 3 g?	
Ans:	$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$	1
	$t = \frac{2.303}{1.5 \times 10^{-3}} \times \log \frac{5}{3}$	1
	t = 443.8 Seconds. OR $t = 444$ s	1
49)	The rate of chemical reaction quadruples for an increase of temperature	
	from 293K to 313K. Calculate energy of activation of the reaction assuming	
	that it does not change with temperature.	
Ans:	Given: $K_2 = 4K_1$; $T_1 = 293K$; $T_2 = 313K$ & $R = 8.314JK^{-1}mol^{-1}$	
	$\log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R} \left[\frac{T_{2} - T_{1}}{T_{1}T_{2}} \right]$	1
	$\therefore k_2 = 4k_1$	
	$\log 4 = \frac{E_{a}}{2.303 \times 8.314} \left[\frac{313 - 293}{293 \times 313} \right] \qquad \text{OR} \qquad E_{a} = \frac{\log 4 \times 2.303 \times 8.314 \times 293 \times 313}{20}$	1
	$E_a = 52864 J$ OR 52.864 kJ	1