GOVERNMENT OF KARNATAKA KARNATAKA STATE EXAMINATION & ASSESSMENT BOARD II YEAR PUC SUPPLIMENTARY EXAMINATION JUNE – 2023 SUBJECT: CHEMISTRY SUBJECT CODE: 34

SCHEME OF EVALUATION

	PART-A		
I.	Select the correct option from the given choices:	15X1=15	
1)	In non-polar molecular solids, the particles are held together by		
	a) Hydrogen bond b) Ionic bond c) Covalent bond d) London forces		
Ans:	d) London forces OR d) OR London forces	1	
2)	Which of the following is a colligative property?		
	a) Osmosis b) Osmotic pressure c) Optical activity d) Boiling point		
Ans:	b) Osmotic pressure OR b) OR Osmotic pressure	1	
3)	Which of the following term is dependent on temperature?		
	a) Molarity b) Mole fraction c) Molality d) Mass percentage (w/w)		
Ans:	a) Molarity OR a) OR Molarity	1	
4)	How much electricity in terms of Faraday is required to produce one		
	mole of Aluminum (Al) from Al ³⁺ ion?		
	a) 1F b) 6F c) 3F d) 2F		
Ans:	c) 3F OR c) OR 3F	1	
5)	Unit of rate constant for zero order reaction is		
	a) molL ⁻¹ s ⁻¹ b) s ⁻¹ c) mol ⁻¹ Ls ⁻¹ d) molL ⁻¹		
Ans:	a) molL ⁻¹ s ⁻¹ OR a) OR molL ⁻¹ s ⁻¹	1	
6)	Which one of the following has minimum flocculation power?		
	a) Pb^{4+} b) Al^{3+} c) Mg^{2+} d) Na^{+}		
Ans:	a) Pb^{4+} OR a) OR Pb^{4+}	1	
7)	Electrolytic refining is used to purify which of the following metal?		
	a) Cu b) Ge c) Tl d) Hg		
Ans:	a) Cu OR a) OR Cu	1	
8)	The noble gas which does not occur in the atmospheric air is		
	a) Helium b) Neon c) Argon d) Radon		
Ans:	d) Radon OR d) OR Radon	1	
9)	The valence shell electronic configuration of element with atomic		
	number (z) = 24 is a) $3d^4 4s^2$ b) $3d^5 4s^1$ c) $3d^6 4s^1$ d) $3d^4 4s^1$		
Ans:	b) $3d^5 4s^1$ OR b) OR $3d^5 4s^1$	1	

		1
10)	Indicate the complex ion which shows geometrical isomerism	
	a) $[Cr(H_2O)_4 Cl_2]^+$ b) $[Pt(NH_3)_3 Cl]$ c) $[Co(H_2O)_6]^{3+}$ d) $[Co(CN)_4 (NC)]^{3-}$	
Ans:	a) $[Cr(H_2O)_4 Cl_2]^+$ OR a) OR $[Cr(H_2O)_4 Cl_2]^+$	1
11)	Which of the following has highest melting point?	
	a) o-dichlorobenzene b) m-dichlorobenzene	
	c) p-dichlorobenzene d) chlorobenzene	
Ans:	c) p-dichlorobenzene OR c) OR p-dichlorobenzene	1
12)	The IUPAC name of wood spirit is	
	a) Methanol b) ethanol c) methanol d) ethanal	
Ans:	a) Methanol OR a) OR Methanol	1
13)	Which of the following is more acidic?	
	a) CH ₃ COOH b) CICH ₂ COOH c) Br CH ₂ COOH d) FCH ₂ COOH	
Ans:	d) FCH ₂ COOH OR a) OR FCH ₂ COOH	1
14)	The hybridised state of Nitrogen in trimethylamine is	
	a) sp b) sp ² c) sp ³ d) dsp^2	
Ans:	c) sp^3 OR c) OR sp^3	1
15)	The hormone which increases the blood glucose level is	
	a) glucocorticoids b) glucagon c) Progesterone d) Thyroxine	
Ans:	b) glucagon OR b) OR glucagon	1
II.	Fill in the blanks by choosing the appropriate word from those given in the	5 X 1
	brackets: [Activation energy, Dettol, Grignard, XeO3, Anoxia	= 05
16)	Low blood oxygen causes climbers to become weak and unable to think	
	clearly, symptoms of a condition known as	
Ans:	Anoxia	1
17)	The criteria for an effective collision of molecules are proper orientation and	
Ans:	Activation energy	1
18)	Complete hydrolysis of XeF ₆ with gives	
Ans:	XeO ₃	1
19)	Alkyl magnesium halides are known as reagents.	
Ans:	Grignard	1
20)	A mixture of chloroxylenol and terpineol is called	
Ans:	Dettol	1
·		*

	PART	Г - В	
III.	ANSWER ANY FOUR OF THE FOLLOWING. EACH QUESTION		5 X 2
	CARRIES TWO MARKS.		= 10
21)	Write any two differences between Schottky defect and Frenkel defect.		
Ans:	Frenkel defect	Schottky defect	RK
	the dislocation of cation from its normal	missing of both cation and anion	ect MA
	site to the interstitial site.	from the crystal lattice.	NE
	Density remains same.	Density decreases.	wo (
	Shown by ionic substance, a large	Shown by ionic substance, almost	ny t swei
	difference the size of ions.	same size of ions.	(A an
22)	What are Fuel cells? Write the electro	ode reaction taking place at cathode	
	of H ₂ - O ₂ fuel cell.		
Ans:	Galvanic cell converts the energy of	combustion of fuels like hydrogen,	
	methane, methanol etc directly into elect	trical energy.	1
	At cathode: $O_{2(g)} + 2H_2O_{(l)}$	$+4e^{-} \rightarrow 4OH^{-}_{(aq)}$	1
23)	A first order reaction is found to have a rate constant $k = 5.5 \times 10^{-14} S^{-1}$.		
	Find the half-life of the reaction.		
Ans:	$k = \frac{0.693}{t_{1/2}}$ OR	$t_{y_2} = \frac{0.693}{K}$	1
	0.693	1 AC X 10+13	
	$t_{y_2} = \frac{5.5 \times 10^{-14}}{5.5 \times 10^{-14}}$	$= 1.26 \times 10^{-13}$	1
24)	Write any two consequences of L anth	anoid contraction	
Ans:	1. The separation of lanthanoids in pure	state becomes difficult OR	
	Difficulty in separation of lanthanoids	s due to similar chemical properties.	1
	2. The atomic radii of 3^{rd} row transition	series elements are almost similar to	
	that of 2^{nd} row transition series element	nts. OR	
	The identical radii of Zirconium (Zr) and	nd Hafnium (Hf).	1
25)	Explain Williamson Synthesis of ether with an example.		
Ans:	When alkyl halides are allowed to react	with sodium alkoxide gives ethers.	1
	R — X + R — O Na —	\rightarrow R – O – R' + NaX	
	Alkyl Sodium halide alkoxide	Ether	1
	Equation = 1M & Explanation =1M	OR Self-explanatory equation: 2M	

26)	What is Hell – Volhard – Zelinsky reaction. Write equation.	
Ans:	Carboxylic acids having an α -hydrogen on treated with chlorine or bromine in the presence of red Phosphorus gives α -halocarboxylic acid. $\begin{array}{c} \mathbf{R} - \mathbf{CH}_2 - \mathbf{COOH} & \frac{1. \ X_2/\text{Red phosphorus}}{2. \ H_2O} & \mathbf{R} - \mathbf{CH} - \mathbf{COOH} + \mathbf{HX} \\ \text{Carboxylic acid} & \mathbf{X} \\ \mathbf{X} = \mathbf{CI}, \mathbf{Br} \\ \alpha\text{-Halocarboxylic acid} \end{array}$	1
	Equation = 1M & Explanation =1M OR Self-explanatory equation: 2M	
27)	What are Tranquilizers? Give an example.	
Ans:	The chemicals which are used for the treatment of stress and mental diseases are called tranquilisers. Example: Iproniazid, phenelzine, Chlordiazepoxide, meprobamate and equanil (Any one correct example)	1
28)	Why soap does not work in hard water?	
Ans:	Hard water contains calcium and magnesium ions. When soaps are dissolved in hard water, these ions displace sodium or potassium from their salts and form insoluble calcium or magnesium salts of fatty acids. These insoluble salts separate as scum.	1
	$2C_{17}H_{35}COONa + CaCl_{2} \longrightarrow 2NaCl + (C_{17}H_{35}COO)_{2}Ca$ Soap Insoluble calcium stearate (scum)	1
	Explanation without equation: 2Marks & Only Equation: 1Mark	
	PART - C	
IV.	ANSWER ANY FOUR OF THE FOLLOWING. EACH QUESTION CARRIES 3 MARKS.	5 X 3 = 15
29)	Write the chemical equations involved in the leaching of pure alumina from ore.	
Ans:	$Al_2O_{3(s)} + 2NaOH_{(aq)} + 3H_2O_{(l)} \xrightarrow{473-523K}{35-36 \text{ bar}} 2Na[Al(OH)_4]_{(aq)}$	1
	$2\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{(aq)} + \mathrm{CO}_{2(g)} \longrightarrow \mathrm{Al}_{2}\mathrm{O}_{3} \cdot x\mathrm{H}_{2}\mathrm{O}_{(s)} + 2\mathrm{Na}\mathrm{HCO}_{3(aq)}$	1
	$Al_2O_3 \cdot xH_2O_{(s)} \xrightarrow{1470 \text{ K}} Al_2O_{3(s)} + xH_2O_{(g)} $ OR	1
	$Al_2O_3 + 2NaOH + 3H_2O \longrightarrow 2Na[Al(OH)_4]$	1
	$2Na[Al(OH)_{4}] + CO_{2} \longrightarrow Al_{2}O_{3} \cdot xH_{2}O + 2NaHCO_{3}$	1
	$Al_2O_3 \cdot xH_2O \xrightarrow{1470K} Al_2O_3 + xH_2O$ (where x = 3) One mark for each step	1

30)	In the manufacture of ammonia by Haber's process, write the balanced	
	chemical equation with any two conditions to get maximum yield	
Ans:	$N_{2(g)} + 3H_{2(g)} \frac{700K 200atm}{Fe \text{ catalyst}} 2NH_{3(g)}$	1
	1. High temperature about 550°C or 823K	-
	2. High pressure 200×10^5 Pa (about 200 atm)	1
	3. Catalyst: Iron or Iron oxide.	
	4. K_2O and Al_2O_3 are used as catalytic promoter. (Any two correct answers)	1
31)	Complete the following reaction:	
a)	$4A1 + 3O_2 \rightarrow$	
b)	$2SO_2 + O_2 \xrightarrow{V_2O_3}$	
c)	$CaO + H_2O \rightarrow$	
Ans: a)	2Al ₂ O ₃ OR Aluminium trioxide OR Alumina	1
b)	2SO ₃ OR Sulphur trioxide	1
c)	Ca(OH) ₂ OR Calcium hydroxide.	1
32. a)	Write any two anomalous behavior of fluorine	
b)	Interhalogen compounds are more reactive than halogens. Give one reason.	
Ans: a)	1. Ionisation enthalpy, electronegativity and electrode potentials are higher	
	for fluorine than expected from the trends shown by other halogens.	<i>.</i>
	2. Ionic and covalent radii, m.p and b.p and electron gain enthalpy of fluorine	(Any two
	are quite lower than expected.	correct
	3. Low F–F dissociation enthalpy	answers)
	4. Most of the reactions of fluorine are exothermic.	1 + 1
	5. HF is a liquid (b.p. = 293 K) while all other hydrogen halides are gases	
	6. Forms only one oxoacid while other halogens form a number of oxoacids.	
	(Any two correct answers)	
b)	X-X' covalent bond in interhalogens is weaker than $X - X$ bond in halogens.	1
33.	Write the balanced chemical equations in the manufacture of potassium	
	dichromate (K ₂ Cr ₂ O ₇) from chromite ore.	
Ans:	Step 1: 4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \rightarrow 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂	1
	Step 2: $2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O$ or	_
	$2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O$	1
	Step 3: $Na_2Cr_2O_7 + 2KCl \rightarrow K_2Cr_2O_7 + 2NaCl$ One mark for each step	1

34. a)	The transition metals and their compounds are known for their catalytic	
	activity. Give two reasons.	
b)	Between Sc ³⁺ and Cu ²⁺ ion, which is colourless?	
Ans: a)	1) Due to variable (multiple) oxidation states.	1 + 1
	2) Large surface area for adsorption of reactant.	(Any
	3) Formation of intermediate compounds.	two
	(Bonds between reactant and atoms of the surface of the catalyst).	correct
	4) Due to their ability to form complexes	answers)
1 -)	(Any two correct answers)	1
D)	SC ^J T	1
35)	Using Valence Bond Theory [VBT], explain geometry, hybridisation and	
	magnetic property of $[CoF_6]^{-3}$ ion. [Atomic number of Cobalt is 27].	
Ans: a)	In this complex, the oxidation state of Co is $+3$.	
b)	F ⁻ ion provides a weak ligand field.	
0)	Electronic configuration of Co^{+3} is [Ar] $3d^6 4s^0$.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	one 4s, three 4p & two outer 4d-orbitals hybridised to yield six $sp^{3}d^{2}$ hybrid	
	orbitals pointing towards the six corners of an octahedron.	
	$\begin{bmatrix} & & & \\ & & & \\ & 4s & 4p & \\ & 4d & \\ \end{bmatrix}$	1
	six sp^3d^2 hybrid orbitals	
	Six sp ³ d ² hybrid orbitals with six pairs of electrons from F ⁻ ligands: $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	1
	Thus, the complex has octahedral geometry.	
	This complex is paramagnetic due to presence of unpaired electrons.	
	Hybridisation: sp ³ d ² ; Geometry: Octahedral;	
	Magnetic property: Paramagnetic	
36) a)	Draw the figure to show splitting of d-orbitals in an octahedral crystal field.	
b)	Write the IUPAC name [Cr(NH ₃) ₃ (H ₂ O) ₃]Cl ₃	

38) a)	1.00g of a non-electrolyte solute dissolved in 50g of benzene lowered the		
	freezing point of benzene by 0.40K. the freezing point depression constant of		
	benzene is 5.12Kkgmol ⁻¹ . Find the molar mass of the solute.		
b)	Define Van't Hoff factor (i). give the value of 'I' for complete dimerization		
	of all the molecules of ethanoic acid in benzene.		
Ans: a)			
	$M_2 = \frac{1000 \times w_2 \times K_b}{\Delta T_b \times w_1} \qquad \qquad M_2 = \frac{K_b \times 1000 \times w_2}{\Delta T_b \times w_1} \cdot$	1	
	$5.12 \times 1 \times 1000$	1	
	$M_2 = \frac{0.4 \times 50}{0.4 \times 50}$	I	
	$M_2 = 256 \text{ g mol}^{-1}$	1	
b)	"Van't Hoff's factor is defined as the ratio of the experimental value of the colligative property to the calculated value of the colligative property". OR		
	$i = \frac{\text{Normal molar mass}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	1	
	Abnormal molar mass	-	
	$=\frac{\text{Observed colligative property}}{\text{Calculated colligative property}}$		
	Total number of moles of particles after association/dissociation		
	Number of moles of particles before association/dissociation		
	(any one correct equation)		
	Van't Hoff's factor $=$ i $= 2$	1	
39) a)	Calculate the emf of the cell in which the following reaction take place at		
<i>c</i> , <i>a</i> ,	298 K: $Mg_{(s)} + 2Ag^+_{(0,0001M)} \rightarrow Mg^{2+}_{(0,130M)} + 2Ag_{(s)}$: Given: $E_{coll}^0 = 3.17V$		
b)	State Kohlrausch law of independent migration of ions Mention one		
	application of it.		
Ans: a)	The Nernst equation is		
	$E_{(cell)} = E_{cell}^{\circ} - \frac{RT}{nE} \ln \frac{[Mg^{2+}]}{[Ag^{+}]}$	1	
	$E_{cell} = 3.17 V - \frac{0.059 V}{n} \log \left[\frac{0.130}{(0.0001)^2}\right]$	1	
	$E_{cell} = 3.17 V - \frac{0.059 V}{2} \times 7.114$	1	
	$E_{cell} = 3.17 V - 0.21 V$		
	$E_{cell} = +2.96 V.$		

Ans: b) "At infinite dilution when the dissociation of the ions is complete each ion makes
a definite contribution to the total molar conductance irrespective of the nature of
the other ion".
Application: In the calculation of
1. molar conductivity at infinite dilution (A₀) for weak electrolytes.
2. Degree of Dissociation (
$$\alpha$$
)
3. Dissociation Constant K (Any one correct answer)
40) a) Derive integrated rate equation for the rate constant of a zero-order reaction.
Draw a graph of potential energy v/s reaction coordinate show the effect of
catalyst on activation energy.
Ans: a) Consider a first order reaction, $\mathbb{R} \to \mathbb{P}$
 $[\mathbb{R}]_0 = \text{Initial concentration of the reactant.}$
 $[\mathbb{R}] = \text{Concentration of the reactant.}$
 $[\mathbb{R}] = \text{Concentration of the reactant.}$
 $[\mathbb{R}] = \text{Concentration of the reactant.}$
 \mathbb{R} ate $= -\frac{d[\mathbb{R}]}{dt} = k[\mathbb{R}]^0$
Where k is rate constant of a zero order reaction
 $\therefore -\frac{d[\mathbb{R}]}{dt} = k[\mathbb{R}]^0$
Integrating both sides:
 $[\mathbb{R}] = -kt + 1 \dots (i)$ (I or C= Integration constant)
When $t = 0$, $[\mathbb{R}] = [\mathbb{R}]_0$;
Substituting $[\mathbb{R}] = [\mathbb{R}]_0$ in equation (i),
 $[\mathbb{R}]_0 = -k \times 0 + 1$
 $[\mathbb{R}]_0 = 1$
Substituting value of '1' in equation (i),
 $[\mathbb{R}] = -kt + [\mathbb{R}]_0$
 $k = \frac{[\mathbb{R}]_0 - [\mathbb{R}]}{t}$

Ans: b)	Reaction path	
	All of the sector of the secto	2
	Reaction coordinate	
41. a)	Give any two characteristics of chemisorption.	
D)	what is homogeneous catalysis? Give an example.	
C)	Denne pepuzation.	
a)	 Arises because of chemical forces (bonds). Chemisorptions are Highly specific in nature occurs only by the possibility of formation of chemical bond. The process is Irreversible in nature. Gases which can react with adsorbent show chemisorption. Enthalpy of Chemisorptions is high. i.e., 80KJ- 240KJmol⁻¹. Chemisorptions require high activation energy. 	/ two correct answers
	7. Chemisorptions Results into uni-molecular layer.	Any
	8. High temperature is favourable for Chemisorptions.	.1(
	9. Chemisorptions increases with increase in surface area.	1
b)	(Any two confect answers)	
	phase (Physical state) are known as homogeneous catalysis. Example: $2SO_{2(g)} + O_{2(g)} \xrightarrow{NO_{(g)}} 2SO_{2(g)}$	1
	$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$ OR	1
c)	Acid hydrolysis of esters (Any one correct example) When a freshly prepared precipitate is shaken with the mediums and a small amount of suitable electrolyte, the precipitate gets dispersed giving colloidal solution. This phenomenon is known as peptization. OR	1
	The process of conversion of freshly prepared precipitate into a colloidal solution by adding an electrolyte containing the common ion is called peptisation.	

	Phenol reacts with conc. HNO_3 in the presence of conc. H_2SO_4 to give 2,4,6-	
	trinitro phenol (picric acid).	1
	OH OH	
	$+ 3HNO_3 \longrightarrow + 3H_2O$	1
	Phenol	
	2,4,6 - Trinitro phenol (Picric acid) A yellow crystalline solid	
	Equation = 1M & Explanation =1M OR Self-explanatory equation: 2M	
44) a)	How does formaldehyde react with concentrated alkali on heating? Give	
	equation.	
b)	$\mathbf{P} + \text{SnCl}_{2} + \text{HCl} \longrightarrow \text{RCH} = \text{NH} \xrightarrow{\text{H}_{3}0^{+}} \mathbf{O}$	
	Line tify D and O	
	Identify F and Q	
c)	The lower members of aldehydes and ketones are miscible with water. Give	
	reason.	
Ans: a)	formaldehyde is heating with concentrated alkali undergo self-oxidation and	
	[,	
	reduction reaction, one molecule of the formaldehyde is reduced to methanol &	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate).	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate).	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). H H H	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ \hline C = O + Conc. KOH \longrightarrow H - C \\ \hline C \\ \hline OH + H - C \\ \hline OH \\ \hline OH + H - C \\ \hline OH \\ \hline OH$	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ H$	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ H \end{array} = 0 + Conc. KOH \\ H \\ $	1
	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ H \end{array} = 0 + Conc. KOH \\ H \\ $	1
b)	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ H \end{array} \\ C = O + Conc. KOH \longrightarrow H \\ H \\ C \\ H \\ H$	1 1 1+1
b)	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ C \\ H \end{array} \\ C \\ C$	1 1 1+1
b)	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ C \\ H \end{array} = 0 + Conc. KOH \\ H \\ $	1 1 1+1
b)	reduction reaction, one molecule of the formaldehyde is reduced to methanol & another is oxidised to formic acid salt (potassium formate). $ \begin{array}{c} H \\ 2 \\ H \\ H$	1 1 1+1 1

45) a)	Explain Hoffmann - Bromamide degradation reaction with equation	
b)	How do you convert a diazonium salt solution into iodobenzene? Give	
	equation	
c)	Write the IUPAC name of	
	$CH_3 - N - CH_3$	
	L CH-	
	CH3	
Ans: a)	Amide on treating with bromine in aqueous or alcoholic NaOH solution	
	gives primary amines.	1
	Ŷ	
	$R-\overset{''}{C}-NH_2 + Br_2 + 4KOH \longrightarrow R-NH_2 + K_2CO_3 + 2KBr + 2H_2O$	
	OR	1
	0	
	$R-C-NH_2 + Br_2 + 4NaOH \longrightarrow R-NH_2 + 2NaBr + Na_2CO_3 + 2H_2O$	
	amide bromine ethanolic printary unine sodium	
	hydroxide	
	Equation = 1M & Explanation =1M OR Self-explanatory equation: 2M	
b)	When diazonium salt solutions are treated with potassium iodide solution	1
	gives iodobenzene.	
	+	
	$C_6H_5N_2Cl^- + KI \longrightarrow C_6H_5I + KCl + N_2$	1
	Iodobenzene	
	Equation = $1NI \propto Explanation = 1NI OR Self-explanatory equation: 2M$	_
	N, N – Dimethylmethanamine	1
46) a)	Write the Haworth's structure of maltose.	
b)	What are essential amino acids? Give an example	
c)	Name the disease caused by the deficiency of Vitamin-D	

