

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD

II PUC SUPPLEMENTARY EXAMINATION MAY/JUNE-2023

_ _ _ _

_

Subject: **PHYSICS**

<u>SCHEME OF EVALUATION</u> Subject code: **33**

٦

	PART – A	
I. P	ick the correct option among the four given options for ALL of the following	
	questions: 15 × 1 = 15	
1.	The SI unit of electric field is	
	(a) NC (b) NC^{-2} (c) NC^{-1} (d) Vm	
Ans	(c) NC^{-1}	1
2.	The electric potential due to an electric dipole falls off, at large distances (along axis) as	
	(a) $\frac{1}{r}$ (b) $\frac{1}{r^2}$ (c) $\frac{1}{r^3}$ (d) r^2	
	(a) $\frac{1}{r}$ (b) $\frac{1}{r^2}$ (c) $\frac{1}{r^3}$ (d) r^2	
Ans	(b) $\frac{1}{r^2}$	1
	r^2	
3.	The capacitance of a parallel plate capacitor is independent of	
	(a) area of plates (b) distances between the plates	
	(c) dielectric medium present between the plates (d) potential difference between the plates	
Ans	(d) potential difference between the plates	1
4.	Potential difference can be measured accurately using	
	(a) galvanometer (b)ammeter (c) potentiometer (d) voltmeter	
Ans	(c) potentiometer	1
5.	The cyclotron frequency is given by the equation	
	(a) $V_{\rm c} = \frac{q \text{B}}{2\pi \text{m}}$ (b) $V_{\rm c} = \frac{q \text{m}}{2\pi \text{B}}$ (c) $V_{\rm c} = \frac{m \text{B}}{2\pi q}$ (d) $V_{\rm c} = \frac{q}{2\pi \text{mB}}$	
Ans	(a) $V_{\rm C} = \frac{q \mathrm{B}}{2\pi \mathrm{m}}$	1
6.	The magnetic susceptibility of a diamagnetic material is	
	(a) small and positive (b) small and negative	
	(c) large and positive (d) large and negative	
Ans	(b) small and negative	1
7.	"The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic	
	flux through the circuit". This is the statement of	
	(a) Lenz's law (b) Faraday's law of electromagnetic induction	
	(c) Ampere's circuital law (d) Gauss' law of magnetism	
Ans	(b) Faraday's law of electromagnetic induction	1
8.	The frequency of alternating current in an AC generator is decided by	
	(a) area of the coil (b) number of turns of the coil	
	(c) frequency of revolution of the coil (d) strength of magnetic field	

Ans	(c) frequency of revolution of the coil	1
9.	In case of a pure capacitor connected to an AC source, the phase difference between voltage	
	and current through the circuit is	
	(a) 180° (b) 90° (c) 0° (d) 45°	
Ans	(b) 90°	1
10.	Electromagnetic waves are produced by	
	(a) accelerated charges(b) stationary charges	
	(c) charges in uniform motion (d) a conductor carrying steady current	
Ans	(a) accelerated charges	1
11.	A concave mirror produces virtual image when the object is placed	
	(a) at its centre of curvature (b) beyond its centre of curvature	
	(c) between its principal focus and centre of curvature (d) within its principal focus	
Ans	(d) within its principal focus	1
12.	The bending of light around the corners of a small opaque object is called	
	(a) polarisation(b) diffraction(c) interference(d) refraction	
Ans	(b) diffraction	1
13.	In photoelectric experiment, increase in the intensity of light ($v > v_0$)	
	(a) increases kinetic energy of photoelectrons (b) increases photoelectric current	
	(c) decreases kinetic energy of photoelectrons (d) photoelectric current remains constant	
Ans	(b) increases photoelectric current	1
14.	The nuclides ${}_{1}^{3}H$ and ${}_{2}^{3}He$ are	
	(a) isotopes (b) radioactive (c) isotones (d) isobars	
Ans	(d) isobars	1
15.	The universal logic gate among the following is	
	(a) NOT gate(b) AND gate(c) NAND gate(d) OR gate	
Ans	(c) NAND gate	1
II. F	ill in the blanks by choosing appropriate answer given in the brackets for ALL	
t	he following questions: $5 \times 1 = 5$	
((wavefront, zero, vacuum, hysteresis, beta decay)	
16.	The electrostatic force between two charges is maximum in	
Ans	vacuum	1
17.	Ferromagnetic materials exhibit the phenomenon of	
Ans	hysteresis	1
18.	is defined as a surface of constant phase.	
Ans	wavefront	1
19.	Ina nucleus spontaneously emits an electron or a positron.	
Ans	beta decay	1
20.	Energy gap (Eg) in case of conductors is	
Ans	Zero	1

тт	PART – B Answer any FIVE of the following questions: 5 × 2 =	10
21.	Mention any two properties of equipotential surfaces.	
Ans	 i) For any charge configuration, equipotential surface through a point is normal to the electric field at that point. 	
	ii) Work done to move a charge on an equipotential surface is zero.	
	iii) The equipotential surfaces corresponding to different potentials will be (a) very close in case	2
	of strong field and (b) far apart in case of weak field.	
	iv) Two equipotential surfaces do not intersect Any 2 properties	
22.	Write the expression for the magnitude of force experienced by a charged particle moving in	
	a magnetic field and explain the terms.	
Ans	The magnitude of force on a charged particle moving in a magnetic field is $F=q v B \sin \theta$	1
	where, q is the charge on the particle, v is the speed of the particle, B is the magnetic field,	
	θ is the angle subtended by velocity vector (\vec{v}) with magnetic field vector (\vec{B})	
	(Explanation of any 2 terms)	1
	NOTE: Even if $\vec{F} = q(\vec{v} \times \vec{B}) = q v B \sin\theta \hat{n}$ is written, mark must be awarded.	-
23.	State and explain Gauss' law in magnetism.	
Ans	Statement: The net magnetic flux through any closed surface placed in magnetic field is zero.	1
	Explanation: The magnetic field lines always form a closed loop. Therefore the total magnetic flux	
	through the closed surface $\Phi = \sum \vec{B} \cdot \vec{\Delta S} = 0$ OR	1
	The isolated magnetic poles do not exist. Therefore the total magnetic flux through the closed surface	
	$\Phi = \sum \vec{B} \cdot \vec{\Delta S} = 0$	
24.	A coil of self inductance 2H is carrying a steady current of 1 A. Calculate the energy stored in	
	the coil.	
Ans	Energy stored in the coil, $U = \frac{1}{2}LI^2$	1
	$= \frac{1}{2} x 2 x 1^2 = 1 J$	1
25.	What is a transformer? Mention its principle of working.	
Ans	Transformer is a device used to increase or decrease alternating voltage (i.e. to vary ac)	1
	It works on the principle of mutual induction .	1
26.	What are displacement currents and conduction currents?	
Ans	The current due to time varying electric field/flux is called displacement current.	1
	OR A time varying electric field between the plates of a capacitor produces a current. It is called as displacement current.	
	The current due to flowing charges is called conduction current.	1
27.	Give any two uses of Polaroids.	1
Ans	Polaroids are used i) to produce or analyse plane polarised light,	<u> </u>
	i i i i i i i i i i i i i i i i i i i	

	ii) to control the intensity of light in sunglasses, windowpanes, etc. and	2
	iii) in photographic cameras and 3D movie cameras. Any 2 uses	
<u></u>		
28.	Name the spectral series of hydrogen atom which lies in (i) visible region and (ii) ultraviolet	
•	region.	
Ans	(i) Visible region : Balmer series	
	(ii) Ultraviolet region : Lyman series	
29.	Draw the schematic diagram of a nuclear reactor based on thermal nuclear fission and label	
	the parts.	
Ans	REFLECTOR COOLANT Diagram CONTROL CORE HEAT EXCHANGER (STEAM GENERATOR) WATER FROM	
	PART – C	
30.	Answer any FIVE of the following questions:5 × 3 = 15State and explain Coulomb's law of electrostatics.	
Ans	Statement: The electrostatic force of attraction or repulsion between two stationary point charges	
	is directly proportional to the product of the magnitude of the two charges and inversely proportional to the square of the distance between charges. Explanation: If q_1 and q_2 are the two point charges at rest separated by a distance 'r', then by Coulomb's law.	
	$F \alpha \frac{ q_1 q_2 }{r^2}$	
	$\Rightarrow F = K \frac{ q_1 q_2 }{r^2}$	
	Where, K is proportionality constant and $K = \frac{1}{4\pi\varepsilon_0}$ for air/vacuum in SI system	
0.1	OR $F = \frac{1}{4\pi\varepsilon_0} \frac{ q_1q_2 }{r^2}$	
31.	Derive the expression J= oE.	
Ans	By Ohm's law, $V = RI$.	
	therefore V = $\left(\frac{\rho L}{A}\right)I$ Because, R = $\rho\left(\frac{L}{A}\right)$.	
	OR $V = \rho L J$ (:: $J = \frac{I}{A}$ is the current density)	
	OR $\frac{V}{I} = \rho J \Longrightarrow E = \rho J$ (because $\frac{V}{I} = E$)	

	Therefore $J = \frac{E}{\rho} = \sigma E$ where, $\sigma = \frac{1}{\rho}$ is the conductivity of the material of the conductor.	1		
32.	2. Explain the conversion of galvanometer into an ammeter with a circuit diagram.			
Ans	A galvanometer can be converted into an ammeter by connecting a low resistance in parallel with it. Circuit diagram R _G – resistance of galvanometer G. r _s – shunt resistance in parallel with the galvanometer. OR $I \longrightarrow Ig G \longrightarrow I$ $I \longrightarrow Ig G \oplus I$ $I \oplus Ig G \oplus Ig G \oplus I$ $I \oplus Ig G \oplus I$	1 1		
33.	Mention any three properties of magnetic field lines.			
Ans	 i) The magnetic field lines form closed loops. ii) The tangent to the field line at a given point represents the direction of the net magnetic field at that point. iii) The larger the number of field lines crossing per unit area, the stronger is the magnitude of the magnetic field. iv) The magnetic field lines do not intersect. Any 3 properties 	3		
34.	Derive an expression for motional emf induced in a straight conductor moving perpendicular to a uniform magnetic field.			
Ans	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1		
	(because -at/at = V)			
35.	What is meant by total internal reflection? Mention two uses of optical fibres.			
Ans	When light travelling from an optically denser medium to a rarer medium incident on the interface at an angle greater than a particular angle (i.e. critical angle) is completely reflected back into the same medium. This phenomenon is called the total internal reflection. Uses of optical fibres	1		
	 Optical fibres are used in communication for the transmission of signals. Optical fibres are used in endoscopy. Plastic optical fibres are used in decorative lamps. Any 2 uses 	2		

36.	Show that the total energy of an electron rev	olving in hydrogen atom is given by, $\mathbf{E} = -\frac{e^2}{8\pi \varepsilon_0 r}$	
		0	
Ans	+Ze is the charge of the nucleus of hydrogen ato		
	electron, v is the orbital velocity of the electron.		
	For stable orbit, centripetal force $=$ el	lectrostatic force	
	$\frac{\mathrm{mv}^2}{\mathrm{r}} = \frac{1}{4\pi\varepsilon_0} \frac{\mathrm{e}\times\mathrm{e}}{\mathrm{r}^2} . \qquad (\mathrm{For}\;\mathrm{H})$	atom $Z = 1$)	
	Where, m is the mass of electron, e - charge of a	in electron	
	$mv^2 = \frac{e^2}{4\pi\epsilon_0 r}$ or $v^2 = \frac{1}{4\pi\epsilon_0 r}$	$\frac{e^2}{tm\epsilon_0 r}$	
	:. KE = $\frac{1}{2}$ mv ² = $\frac{1}{2}$ m $\frac{e^2}{4\pi m\epsilon_0 r}$ = $\frac{1}{8\pi}$	$\frac{e^2}{\tau \varepsilon_0 r} \qquad (1)$	1
	$P.E = \frac{1}{4\pi\varepsilon_0} \frac{e(-e)}{r} = -\frac{e^2}{4\pi\varepsilon_0 r}$	(2)	1
	The total energy of an electron is the sum of pot	ential energy and kinetic energy.	1
	\therefore Total energy, TE = KE + PE = $\frac{6}{8\pi}$	$\frac{\mathrm{e}^2}{\mathrm{t}\varepsilon_0\mathrm{r}} - \frac{\mathrm{e}^2}{4\pi\varepsilon_0\mathrm{r}} = \frac{\mathrm{e}^2}{4\pi\varepsilon_0\mathrm{r}} \left[\frac{1}{2} - 1\right] = -\frac{\mathrm{e}^2}{8\pi\varepsilon_0\mathrm{r}}.$	
37.	The half-life of a radioactive sample is 4.5 x 1	0^5 years. Calculate (i) the radioactive decay	
	constant and (ii) mean life of the sample.	12	
Ans	$T = 4.5 \times 10^5 \text{ yrs} = 4.5 \times 10^5 \times 365 \times 24 \times 60 \times 60^5 \text{ s}$	$60 = 1.42 \times 10^{13} \text{ s}$	
	Radioactive decay constant, $\lambda = \frac{0.693}{T_{1/2}}$		1
	$\lambda = \frac{0.693}{1.42 \times 10^{13}} = 4.88 \times 10^{-14} \text{s}^{-1} \text{ OR } \lambda = \frac{0.69}{4.5 \times 10^{14}}$	$\frac{3}{10^5} = 1.54 \text{ x } 10^{-6} \text{ year}^{-1}$	1
	Mean life, $\tau = \frac{1}{\lambda} = \frac{1}{4.88 \text{ x } 10^{-14}} = 2.05 \text{ x } 10^{13} \text{ s}$	70 1.0 TATO	1
38.	Mention any three differences between intrin		
Ans	Intrinsic semiconductors	Extrinsic semiconductors	
	i) It is a pure semiconductor	i) It is an impure semiconductor	
	ii) Number of holes and electrons will be	ii) Number of holes and electrons will be	
	equal	unequal	
	iii) Conductivity is zero at very low	iii) Conductivity is not zero even at low	3
	temperatures.	temperatures.	
	iv) Conductivity depends only on temperature	iv) Conductivity depends on temperature	
		and doping concentration.	
	v) Conductivity is relatively less	v) Conductivity is relatively more.	
		Any three differences	

	If the combination of calle is replaced by a single call of omf E and	1
	If the combination of cells is replaced by a single cell of emf E_{eq} and	1
	internal resistance r_{eq} , then $V = E_{eq} - I r_{eq}$ (2) $\equiv A I I_{eq} I C$	
	From equations (1) and (2), $\mathbf{E}_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$ and $\mathbf{r}_{eq} = \frac{r_1 r_2}{r_1 + r_2}$	1
41.	Derive an expression for magnetic dipole moment of an electron revolving in hydrogen atom.	
Ans	According to Bohr model of hydrogen and hydrogen like atoms, the negatively charged electron	
	revolves round the nucleus of charge +Ze. Let 'r' be the radius of the orbit, 'v' be the constant	
	speed with which electron is revolving and 'T' be the period of revolution of the electron.	
	The current associated with revolving electron, $I = \frac{e}{\tau} (1)$	1
	T	
	The period of revolution of the electron is given by $T = \frac{2\pi r}{r}$ (2)	1
	V V	
	$\therefore I = \frac{ev}{2\pi r}(3)$	1
	The magnetic moment associated with the orbital motion which is equivalent to a current loop is	1
	given by $\mu_l = I A$	
	$= \frac{\text{ev}}{2\pi r} \times \pi r^2 = \frac{\text{evr}}{2} (4)$	1
	(The derivation of expression for magnetic moment in terms of angular momentum	
	considering following steps not compulsory)	
	The magnitude of angular momentum of revolving electron is given by	
	$l = m_e v r \mathbf{Or} v r = \frac{l}{m_e} (5)$ Where, $m_e \rightarrow$ mass of the electron	
	$\therefore \mu_l = \frac{el}{2m_e} \qquad \qquad (6)$	
42.	Derive Lens Maker's formula.	
Ans	O be a point object placed on the principal axis of a thin Q	
	convex lens of focal length 'f'. n_1 be the RI of the n_1 A $\bigwedge B$ n_1	
	medium in which object is present and n_2 be the RI of	1
	the material of the lens.	
	$\mathbf{r}_1 \left(\mathbf{n}_2 \right) \mathbf{r}_2 = 1 \mathbf{r}_1 \mathbf{r}_2$	
	(i) For the refraction at the surface QP_1R of radius of \bigvee_R	
	curvature R_1 $ \leftarrow u \rightarrow \leftarrow v \rightarrow $	
	At I ¹ a real image is formed in the medium of RI n ₂ . $ \longleftarrow v^1 \longrightarrow $	
	For this refraction $\frac{n_1}{-u} + \frac{n_2}{v^1} = \frac{(n_2 - n_1)}{R_1}$ (1)	1
	(ii) For the refraction at the surface Q P_2 R of radius of curvature R_2	
	The final image is formed at I and I^1 acts as virtual object.	
	For this refraction $\frac{n_2}{-v^1} + \frac{n_1}{v} = \frac{(n_2 - n_1)}{-R_2}$ (2)	-
	8	

	Equation (1) + (2) gives, $\frac{n_1}{-n_1} + \frac{n_1}{n_2} = \frac{(n_2 - n_1)}{R} - \frac{(n_2 - n_1)}{R}$	1
	Equation (1) + (2) gives, $\frac{1}{-u} + \frac{1}{v} - \frac{1}{R_1} + \frac{1}{R_2}$	
	$\Rightarrow n_1 \left(\frac{1}{-u} + \frac{1}{v} \right) = (n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \Rightarrow \left(\frac{1}{-u} + \frac{1}{v} \right) = (\frac{n_2}{n_1} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	
	If $u = \infty$ then $v = f$. Therefore $\left(\frac{1}{-\infty} + \frac{1}{f}\right) = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	
	$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \mathbf{OR} \frac{1}{f} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \text{This is lens maker's formula.}$	1
43.	(i) Give Einstein's explanation of photoelectric effect. (3)	
	(ii) Mention any two properties of photons. (2)	
Ans	(i) Albert Einstein proposed a new picture of electromagnetic radiation to explain photoelectric	
	effect. According to him, photoelectric emission does not take place by continuous absorption of	1
	energy from radiation. Radiation energy consists of discrete units called quanta of energy of	
	radiation. Each quantum of radiant energy or photon has energy hv, where h is Planck's constant and v the frequency of light.	1
	In photoelectric effect, an electron absorbs a photon of energy (hv) of radiation. If the energy	
	absorbed exceeds the minimum energy needed for the electron to escape from the metal surface (i.e.	
	work function φ_0), the electron is emitted with maximum kinetic energy (K_{max}).	1
	(ii) <u>Properties of photons</u>	
	(a) In interaction of radiation with matter, radiation behaves as if it is made up of particles called	
	photons.	
	(b) Each photon has energy $E = hv$ where v is the frequency, momentum $p = hv/c$ where c is the speed of light.	2
	(c) All photons of light of a particular frequency (v), or wavelength (λ), have the same energy and	
	momentum. The photon energy is independent of intensity of radiation.	
	(d) Photons are electrically neutral and are not deflected by electric and magnetic fields.	
	(e) In a photon-particle collision (such as photon-electron collision), the total energy and total	
	momentum are conserved. However, the number of photons may not be conserved in a collision.	
	Any 2 properties	
44.	(i) What is a rectifier? (1)	
	(ii) Draw the circuit diagram and input-output waveforms of a half wave rectifier. (2)	
	(iii) Explain the working of a half wave rectifier. (2)	
Ans	The device which converts ac into dc is called a rectifier.	1
	D	
		1
	$\frac{ac}{b}$	1
	\mathbb{C}	
	⁷ "] [↓	

Ans	В	
	$I \xrightarrow{I_{1000} J^{1}} J_{L_{100}}$	
	\mathcal{A} I_{σ}	
	(0.2-I)	
	$0.2A$ $60\Omega^{-r_{T}}$ $0.2A$ Applying junction rule and representing branch currents	1
	D	1
	E	
	From loop rule:	
	For the loop ABDA $-100 \text{ I} - 15 \text{ I}_{g} + 60 (0.2 - \text{ I}) = 0$ (1)	1
	For the loop BCDB $-10 (I - I_g) + 5 (0.2 - I + I_g) + 15 I_g = 0$ (2)	1
	Simplifying (1) and (2) to get $-160 \text{ I} - 15 \text{ I}_g = -12 \dots(3)$	
	$-15 \text{ I} + 30 \text{ I}_{\text{g}} = -1$ (4)	1
	Solving (3) and (4) to get $I_g = 3.98 \times 10^{-3} \text{ A}$	1
47.	A series LCR circuit containing an inductor of 1.5 H, a capacitor of 35μ F and a resistor of 50Ω	
-	is connected to ac source of 200V and 50Hz. Calculate (i) the impedance and (ii) power factor	
	of the circuit.	
Ans	a) $X_L = 2\pi v C = 2 \times 3.14 \times 50 \times 1.5 = 471 \Omega$	1
-		
	$X_{\rm C} = \frac{1}{2\pi\nu C} = \frac{1}{2 \text{ x}3.14 \text{ x} 50 \text{ x}35 \text{ x}10^{-6}} = 90.99 \ \Omega \approx 91 \ \Omega$	1
		1
	Impedance: $Z = \sqrt{R^2 + (X_L - X_C)^2}$	1
	$=\sqrt{50^2 + (471 - 91)^2} = 383.27 \ \Omega \approx 383 \ \Omega$	
		1
	Power factor, $\cos \phi = \frac{R}{Z} = \frac{50}{383.27} = 0.13$	
		1
48.	In a Young's double slit experiment, the slits are separated by 0.28 mm and the screen is placed	
	1.4 m away. The distance between the central bright fringe and the fourth bright fringe is	
	measured to be 1.2 cm. Determine the wavelength of light used. Also find the distance of fifth	
	dark fringe from the central bright fringe.	
Ans	i) Distance of n th bright fringe, $(x_n)_B = \frac{n\lambda D}{d}$	1
	d	
	$\Rightarrow \lambda = \frac{(x_n)_B d}{nD} = \frac{1.2 \times 10^{-2} \times 0.28 \times 10^{-3}}{4 \times 1.4} = 0.6 \times 10^{-5} \text{ m} = 6000 \times 10^{-10} \text{ m}$	1
	nD 4×1.4	
	ii) Distance of n th dark fringe, $(x_n)_D = \frac{(2n-1)\lambda D}{2d}$	1
	$\frac{1}{2d}$	
	Distance of 5 th dark fringe, $(x_5)_D = \frac{(2 \times 5 - 1) \times 6000 \times 10^{-10} \times 1.4}{2 \times 0.28 \times 10^{-3}}$	1
	$\frac{2 \times 0.28 \times 10^{-3}}{2 \times 0.28 \times 10^{-3}}$	
	$9 \times 6000 \times 10^{-10} \times 1.4$ 12 5 10 $^{-3}$	1
	$= \frac{9 \times 6000 \times 10^{-10} \times 1.4}{2 \times 0.28 \times 10^{-3}} = 13.5 \times 10^{-3} \text{ m}$	
	$(2n+1)\lambda D$. It is a state of the second sta	
	OR If the formula $(x_n)_D = \frac{(2n+1)\lambda D}{2d}$ is used, then for 5 th dark fringe n=4	

Note: Any other alternate correct method/answer should be considered.