GOVERNMENT OF KARNATAKA
 KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD II PUC SUPPLEMENTARY EXAMINATION MAY/JUNE- 2023

Subject: PHYSICS
SCHEME OF EVALUATION
Subject code: 33

PART - A

PART - A		
	questions: $15 \times 1=15$	
1.	The Sl unit of electric field is (a) NC (b) NC^{-2} (c) NC^{-1} (d) Vm	
Ans	(c) NC^{-1}	1
2.	The electric potential due to an electric dipole falls off, at large distances (along axis) as (a) $\frac{1}{\mathrm{r}}$ (b) $\frac{1}{\mathrm{r}^{2}}$ (c) $\frac{1}{\mathrm{r}^{3}}$ (d) \mathbf{r}^{2}	
Ans	(b) $\frac{1}{\mathrm{r}^{2}}$	1
3.	The capacitance of a parallel plate capacitor is independent of (a) area of plates (b) distances between the plates (c) dielectric medium present between the plates (d) potential difference between the plates	
Ans	(d) potential difference between the plates	1
4.	Potential difference can be measured accurately using (a) galvanometer (b)ammeter (c) potentiometer (d) voltmeter	
Ans	(c) potentiometer	1
5.	The cyclotron frequency is given by the equation (a) $V_{\mathrm{C}}=\frac{\mathrm{qB}}{2 \pi \mathrm{~m}}$ (b) $v_{\mathrm{C}}=\frac{\mathrm{qm}}{2 \pi \mathrm{~B}}$ (c) $\boldsymbol{V}_{\mathrm{C}}=\frac{\mathrm{m} \mathrm{B}}{2 \pi \mathrm{q}}$ (d) $\boldsymbol{v}_{\mathrm{C}}=\frac{\mathrm{q}}{2 \pi \mathrm{mB}}$	
Ans	(a) $\mathcal{V}_{\mathrm{C}}=\frac{\mathrm{qB}}{2 \pi \mathrm{~m}}$	1
6.	The magnetic susceptibility of a diamagnetic material is (a) small and positive (b) small and negative (c) large and positive (d) large and negative	
Ans	(b) small and negative	1
7.	"The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit". This is the statement of (a) Lenz's law (b) Faraday's law of electromagnetic induction (c) Ampere's circuital law (d) Gauss' law of magnetism	
Ans	(b) Faraday's law of electromagnetic induction	1
8.	The frequency of alternating current in an AC generator is decided by (a) area of the coil (b) number of turns of the coil (c) frequency of revolution of the coil (d) strength of magnetic fleld	

Ans	(c) frequency of revolution of the coil	1
9.	In case of a pure capacitor connected to an AC source, the phase difference between voltage and current through the circuit is (a) 180° (b) 90° (c) 0° (d) 45°	
Ans	(b) 90°	1
10.	Electromagnetic waves are produced by (a) accelerated charges (b) stationary charges (c) charges in uniform motion (d) a conductor carrying steady current	
Ans	(a) accelerated charges	1
11.	A concave mirror produces virtual image when the object is placed (a) at its centre of curvature (b) beyond its centre of curvature (c) between its principal focus and centre of curvature (d) within its principal focus	
Ans	(d) within its principal focus	1
12.	The bending of light around the corners of a small opaque object is called (a) polarisation (b) diffraction (c) interference (d) refraction	
Ans	(b) diffraction	1
13.	In photoelectric experiment, increase in the intensity of light $\left(v>v_{0}\right)$ (a) increases kinetic energy of photoelectrons (b) increases photoelectric current (c) decreases kinetic energy of photoelectrons (d) photoelectric current remains constant	
Ans	(b) increases photoelectric current	1
14.	The nuclides ${ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{3} \mathrm{He}$ are (a) isotopes (b) radioactive (c) isotones (d) isobars	
Ans	(d) isobars	1
15.	The universal logic gate among the following is (a) NOT gate (b) AND gate (c) NAND gate (d) OR gate	
Ans	(c) NAND gate	1
	ill in the blanks by choosing appropriate answer given in the brackets for ALL he following questions: $5 \times 1=5$ wavefront, zero, vacuum, hysteresis, beta decay)	
16.	The electrostatic force between two charges is maximum in ___.	
Ans	vacuum	1
17.	Ferromagnetic materials exhibit the phenomenon of ___ .	
Ans	hysteresis	1
18.	____ is defined as a surface of constant phase.	
Ans	wavefront	1
19.	In___ a nucleus spontaneously emits an electron or a positron.	
Ans	beta decay	1
20.	Energy gap (E_{g}) in case of conductors is ____.	
Ans	Zero	1

\begin{tabular}{|c|c|c|}
\hline \& ii) to control the intensity of light in sunglasses, windowpanes, etc. and iii) in photographic cameras and 3D movie cameras. Any 2 uses \& 2 \\
\hline 28. \& Name the spectral series of hydrogen atom which lies in (i) visible region and (ii) ultraviolet region. \& \\
\hline Ans \& \begin{tabular}{l}
(i) Visible region : Balmer series \\
(ii) Ultraviolet region : Lyman series
\end{tabular} \& 1
1 \\
\hline 29. \& Draw the schematic diagram of a nuclear reactor based on thermal nuclear fission and label the parts. \& \\
\hline Ans \& \begin{tabular}{l}
Diagram \\
Labelling any 2 parts
\end{tabular} \& 1
1 \\
\hline \& Answer any FIVE of the following questions:
\[
5 \times 3=15
\] \& \\
\hline 30. \& State and explain Coulomb's law of electrostatics. \& \\
\hline Ans \& \begin{tabular}{l}
Statement: The electrostatic force of attraction or repulsion between two stationary point charges is directly proportional to the product of the magnitude of the two charges and inversely proportional to the square of the distance between charges. \\
Explanation: If \(\mathrm{q}_{1}\) and \(\mathrm{q}_{2}\) are the two point charges at rest separated by a distance ' r ', then by Coulomb's law.
\[
\begin{aligned}
\& \mathrm{F} \alpha \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}^{2}} \\
\Rightarrow \& \mathrm{~F}=\mathrm{K} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}^{2}}
\end{aligned}
\] \\
Where, K is proportionality constant and \(K=\frac{1}{4 \pi \varepsilon_{0}}\) for air/vacuum in SI system \\
OR \(\quad \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}^{2}}\)
\end{tabular} \& 1

1
1
1

\hline 31. \& Derive the expression $\mathrm{J}=\mathrm{oE}$. \&

\hline Ans \& | By Ohm's law, $\mathrm{V}=\mathrm{RI}$. |
| :--- |
| therefore $\mathrm{V}=\left(\frac{\rho \mathrm{L}}{\mathrm{A}}\right) \mathrm{I} \quad$ Because, $\mathrm{R}=\rho\left(\frac{\mathrm{L}}{\mathrm{A}}\right)$. |
| OR $\quad V=\rho L J \quad\left(\because J=\frac{I}{A}\right.$ is the current density $)$ |
| OR $\quad \frac{V}{L}=\rho J=D=\rho J \quad$ (because $\left.\frac{V}{L}=E\right)$ | \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& Therefore \(\mathrm{J}=\frac{\mathrm{E}}{\rho}=\sigma \mathrm{E}\) where, \(\sigma=\frac{1}{\rho}\) is the conductivity of the material of the conductor. \& 1 \\
\hline 32. \& Explain the conversion of galvanometer into an ammeter with a circuit diagram. \& \\
\hline Ans \& \begin{tabular}{l}
A galvanometer can be converted into an ammeter by connecting a low resistance in parallel with it. \\
Circuit diagram \\
\(\mathrm{R}_{\mathrm{G}}\) - resistance of galvanometer G . \\
\(r_{s}\) - shunt resistance in parallel with the galvanometer. \\
OR The resistance of the arrangement \(=\frac{R_{G} r_{s}}{R_{G}+r_{s}}\) \\
OR Shunt resistance: \(r_{s}=\frac{I_{G} R_{G}}{I-I_{G}} \quad\) OR \(\quad S=\frac{I_{g} G}{I-I_{g}}\)
\end{tabular} \& 1
1
1 \\
\hline 33. \& Mention any three properties of magnetic field lines. \& \\
\hline Ans \& \begin{tabular}{l}
i) The magnetic field lines form closed loops. \\
ii) The tangent to the field line at a given point represents the direction of the net magnetic field at that point. \\
iii) The larger the number of field lines crossing per unit area, the stronger is the magnitude of the magnetic field. \\
iv) The magnetic field lines do not intersect. Any 3 properties
\end{tabular} \& 3 \\
\hline 34. \& Derive an expression for motional emf induced in a straight conductor moving perpendicular to a uniform magnetic field. \& \\
\hline Ans \& \begin{tabular}{l}
Labelled diagram (current not necessary in figure) \\
Magnetic flux enclosed by the loop PQRS is
\[
\phi_{\mathrm{B}}=\mathrm{BA} \cos 0=\mathrm{B} l x
\] \\
Induced emf \(\varepsilon=-\frac{\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}\)
\[
\varepsilon=-\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{~B} l \mathrm{x})=-\mathrm{B} l \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{B} l \mathrm{v}
\] \\
(because \(-\mathrm{d} x / \mathrm{dt}=\mathrm{v}\))
\end{tabular} \& 1
1
1 \\
\hline 35. \& What is meant by total internal reflection? Mention two uses of optical fibres. \& \\
\hline Ans \& \begin{tabular}{l}
When light travelling from an optically denser medium to a rarer medium incident on the interface at an angle greater than a particular angle (i.e. critical angle) is completely reflected back into the same medium. This phenomenon is called the total internal reflection. \\
Uses of optical fibres \\
1) Optical fibres are used in communication for the transmission of signals. \\
2) Optical fibres are used in endoscopy. \\
3) Plastic optical fibres are used in decorative lamps. Any 2 uses
\end{tabular} \& 1

2

\hline
\end{tabular}

36.	Show that the total energy of an electron revolving in hydrogen atom is given by, $E=-\frac{\mathrm{e}^{2}}{8 \pi \varepsilon_{0} r}$	
Ans	+Ze is the charge of the nucleus of hydrogen atom, r is the radius of the circular orbit of an electron, v is the orbital velocity of the electron. For stable orbit, centripetal force $=$ electrostatic force $\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e} \times \mathrm{e}}{\mathrm{r}^{2}} . \quad(\text { For } \mathrm{H} \text { atom } \mathrm{Z}=1)$ Where, m is the mass of electron, e - charge of an electron $\begin{align*} & \mathrm{mv}^{2}=\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}} \quad \text { or } \quad \mathrm{v}^{2}=\frac{\mathrm{e}^{2}}{4 \pi \mathrm{~m} \varepsilon_{0} \mathrm{r}} \\ \therefore \mathrm{KE} & =\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m} \frac{\mathrm{e}^{2}}{4 \pi \mathrm{~m} \varepsilon_{0} \mathrm{r}}=\frac{\mathrm{e}^{2}}{8 \pi \varepsilon_{0} \mathrm{r}} \tag{1}\\ \text { P.E } & =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}(-\mathrm{e})}{\mathrm{r}}=-\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}} \tag{2} \end{align*}$ The total energy of an electron is the sum of potential energy and kinetic energy. $\therefore \text { Total energy, TE }=\mathrm{KE}+\mathrm{PE}=\frac{\mathrm{e}^{2}}{8 \pi \varepsilon_{0} \mathrm{r}}-\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}}=\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}}\left[\frac{1}{2}-1\right]=-\frac{\mathrm{e}^{2}}{8 \pi \varepsilon_{0} \mathrm{r}} .$	1 1 1
37.	The half-life of a radioactive sample is 4.5×10^{5} years. Calculate (i) the radioactive decay constant and (ii) mean life of the sample.	
Ans	$\mathrm{T}=4.5 \times 10^{5} \mathrm{yrs}=4.5 \times 10^{5} \times 365 \times 24 \times 60 \times 60=1.42 \times 10^{13} \mathrm{~s}$ Radioactive decay constant, $\lambda=\frac{0.693}{T_{1 / 2}}$ $\lambda=\frac{0.693}{1.42 \times 10^{13}}=4.88 \times 10^{-14} \mathrm{~s}^{-1} \text { OR } \quad \lambda=\frac{0.693}{4.5 \times 10^{5}}=1.54 \times 10^{-6} \mathrm{year}^{-1}$ Mean life, $\tau=\frac{1}{\lambda}=\frac{1}{4.88 \times 10^{-14}}=2.05 \times 10^{13} \mathrm{~s} \quad$ OR $\quad \tau=\frac{1}{\lambda}=\frac{1}{1.54 \times 10^{-6}}=6.49 \times 10^{5}$ year	1 1 1
38.	Mention any three differences between intrinsic and extrinsic semiconductors.	
Ans	Intrinsic semiconductors \quad Extrinsic semiconductors	
	i) It is a pure semiconductor i) It is an impure semiconductor ii) Number of holes and electrons will be ii) Number of holes and electrons will be \quad equal unequal iii) Conductivity is zero at very low iii) Conductivity is not zero even at low \quad temperatures. temperatures. iv) Conductivity depends only on temperature iv) Conductivity depends on temperature v) Conductivity is relatively less and doping concentration.	3
	Any three differences	

	If the combination of cells is replaced by a single cell of emf $\mathrm{E}_{\text {eq }}$ and internal resistance r_{eq}, then $\mathrm{V}=\mathrm{E}_{\text {eq }}-\mathrm{Ir}_{\mathrm{eq}}$ \qquad From equations (1) and (2), $\mathbf{E}_{\text {eq }}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}$ and $\mathbf{r}_{\mathrm{eq}}=\frac{r_{1} r_{2}}{r_{1}+r_{2}}$	
41.	Derive an expression for magnetic dipole moment of an electron revolving in hydrogen atom.	
Ans	According to Bohr model of hydrogen and hydrogen like atoms, the negatively charged electron revolves round the nucleus of charge $+Z e$. Let ' r ' be the radius of the orbit, ' v ' be the constant speed with which electron is revolving and ' T ' be the period of revolution of the electron. The current associated with revolving electron, $\quad I=\frac{e}{T}---(1)$ The period of revolution of the electron is given by $\mathrm{T}=\frac{2 \pi r}{\mathrm{v}}---(2)$ $\therefore \mathrm{I}=\frac{\mathrm{ev}}{2 \pi r}---(3)$ The magnetic moment associated with the orbital motion which is equivalent to a current loop is given by $\begin{align*} \mu_{l} & =\mathrm{IA} \\ & =\frac{\mathrm{ev}}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^{2}=\frac{\mathrm{evr}}{2} \tag{4} \end{align*}$ (The derivation of expression for magnetic moment in terms of angular momentum considering following steps not compulsory) The magnitude of angular momentum of revolving electron is given by $\begin{align*} & l=\mathrm{m}_{\mathrm{e}} \mathrm{v} \text { or } \mathrm{vr}=\frac{l}{\mathrm{~m}_{\mathrm{e}}} \\ & \tag{6}\\ & \therefore-- \text { (5) } \quad \text { Where, } \mathrm{m}_{\mathrm{e}} \rightarrow \text { mass of the electron } \\ & \therefore \mu_{l}=\frac{\mathrm{e} l}{2 \mathrm{~m}_{\mathrm{e}}} \end{align*} \quad---(6) \quad l$	
42.	Derive Lens Maker's formula.	
Ans	O be a point object placed on the principal axis of a thin convex lens of focal length ' f '. n_{1} be the RI of the medium in which object is present and n_{2} be the RI of the material of the lens. (i) For the refraction at the surface $\mathbf{Q P}_{\mathbf{1}} \mathbf{R}$ of radius of curvature \mathbf{R}_{1} At I^{1} a real image is formed in the medium of $R I n_{2}$. For this refraction $\frac{n_{1}}{-\mathrm{u}}+\frac{n_{2}}{\mathrm{v}^{1}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{R_{1}}$. (ii) For the refraction at the surface $\mathbf{Q} \mathbf{P}_{\mathbf{2}} \mathbf{R}$ of radius of curvature $\mathbf{R}_{\mathbf{2}}$ The final image is formed at I and I^{1} acts as virtual object. For this refraction $\quad \frac{n_{2}}{-\mathrm{v}^{1}}+\frac{n_{1}}{\mathrm{v}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{-R_{2}}$..	

	$\begin{aligned} & \text { Equation (1) }+(2) \text { gives, } \frac{n_{1}}{-\mathrm{u}}+\frac{n_{1}}{\mathrm{v}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{R_{1}}-\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{R_{2}} \\ & \Rightarrow \mathrm{n}_{1}\left(\frac{1}{-\mathrm{u}}+\frac{1}{\mathrm{v}}\right)=\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \rightarrow\left(\frac{1}{-\mathrm{u}}+\frac{1}{\mathrm{v}}\right)=\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\ & \text { If } \mathrm{u}=\infty \text { then } \mathrm{v}=\mathrm{f} \text {. Therefore }\left(\frac{1}{-\infty}+\frac{1}{\mathrm{f}}\right)=\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\ & \frac{1}{\mathrm{f}}=\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad \text { OR } \frac{1}{\mathrm{f}}=\left(\mathrm{n}_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \text { This is lens maker's formula. } \end{aligned}$	
43.	(i) Give Einstein's explanation of photoelectric effect. (3) (ii) Mention any two properties of photons.	
Ans	(i) Albert Einstein proposed a new picture of electromagnetic radiation to explain photoelectric effect. According to him, photoelectric emission does not take place by continuous absorption of energy from radiation. Radiation energy consists of discrete units called quanta of energy of radiation. Each quantum of radiant energy or photon has energy hv, where h is Planck's constant and v the frequency of light. In photoelectric effect, an electron absorbs a photon of energy (hv) of radiation. If the energy absorbed exceeds the minimum energy needed for the electron to escape from the metal surface (i.e. work function φ_{0}), the electron is emitted with maximum kinetic energy $\left(\mathrm{K}_{\max }\right)$. (ii) Properties of photons (a) In interaction of radiation with matter, radiation behaves as if it is made up of particles called photons. (b) Each photon has energy $\mathrm{E}=\mathrm{h} v$ where v is the frequency, momentum $\mathrm{p}=\mathrm{h} v / \mathrm{c}$ where c is the speed of light. (c) All photons of light of a particular frequency (v), or wavelength (λ), have the same energy and momentum. The photon energy is independent of intensity of radiation. (d) Photons are electrically neutral and are not deflected by electric and magnetic fields. (e) In a photon-particle collision (such as photon-electron collision), the total energy and total momentum are conserved. However, the number of photons may not be conserved in a collision. Any 2 properties	
44.	(i) What is a rectifier? (ii) Draw the circuit diagram and input-output waveforms of a half wave rectifier. (iii) Explain the working of a half wave rectifier.	
Ans	The device which converts ac into dc is called a rectifier.	

But during the -ve half cycle of AC input, the diode is reverse biased and hence it does not conduct.
So the current flows through the load only during one half cycle of AC input. Hence the name half wave rectifier. The current flowing through the R_{L} is a rectified output in the form of pulsating D.C.
VI. Answer any TWO of the following questions:
$2 \times 5=10$
45. Two capacitors of capacitances $3 \mu \mathrm{~F}$ and $7 \mu \mathrm{~F}$ are connected in series and the combination is connected to a source of emf 10 V . Calculate the effective capacitance of the combination. Also find the potential difference across each capacitor.

Ans
To find Cs: Effective capacitance of series combination, $\mathrm{C}_{\mathrm{s}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

$$
=\frac{3 \times 10^{-6} \times 7 \times 10^{-6}}{\left(3 \times 10^{-6}\right)+\left(7 \times 10^{-6}\right)}=2.1 \mu \mathrm{~F}
$$

To find \mathbf{V}_{1} and \mathbf{V}_{2} : Charge stored in the combination, $\mathrm{Q}=\mathrm{C}_{\mathrm{S}} \mathrm{V}=2.1 \times 10^{-6} \times 10=21 \times 10^{-6} \mathrm{C}$
Potential difference across $1^{\text {st }}$ capacitor, $\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{C}_{1}}=\frac{21 \times 10^{-6}}{3 \times 10^{-6}}=7 \mathrm{~V}$
Potential difference across $2^{\text {nd }}$ capacitor, $\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{C}_{2}}=\frac{21 \times 10^{-6}}{7 \times 10^{-6}}=3 \mathrm{~V}$
Alternate method to find $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$
In series combination $\mathrm{V}_{1}: \mathrm{V}_{2}=\mathrm{C}_{2}: \mathrm{C}_{1}=7: 3$

$$
\begin{aligned}
& \mathrm{V}_{1}=\frac{7}{10} \times 10=7 \mathrm{~V} \\
& \mathrm{~V}_{2}=\frac{3}{10} \times 10=3 \mathrm{~V}
\end{aligned}
$$

46.

Calculate the current through the galvanometer in the following network.

Ans	Applying junction rule and representing branch currents From loop rule: For the loop ABDA $\quad-100 \mathrm{I}-15 \mathrm{I}_{\mathrm{g}}+60(0.2-\mathrm{I})=0$ For the loop BCDB $\quad-10\left(\mathrm{I}-\mathrm{I}_{\mathrm{g}}\right)+5\left(0.2-\mathrm{I}+\mathrm{I}_{\mathrm{g}}\right)+15 \mathrm{I}_{\mathrm{g}}=0$ Simplifying (1) and (2) to get $-160 \mathrm{I}-15 \mathrm{I}_{\mathrm{g}}=-12$ $-15 \mathrm{I}+30 \mathrm{I}_{\mathrm{g}}=-1$ Solving (3) and (4) to get $\mathrm{I}_{\mathrm{g}}=3.98 \times 10^{-3} \mathrm{~A}$	
47.	A series LCR circuit containing an inductor of 1.5 H , a capacitor of $35 \mu \mathrm{~F}$ and a resistor of 50Ω is connected to ac source of 200 V and 50 Hz . Calculate (i) the impedance and (ii) power factor of the circuit.	
Ans		1 1 1 1 1 1
48.	In a Young's double slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm . Determine the wavelength of light used. Also find the distance of fifth dark fringe from the central bright fringe.	
Ans	i) Distance of $\mathrm{n}^{\text {th }}$ bright fringe, $\left(\mathrm{x}_{\mathrm{n}}\right)_{\mathrm{B}}=\frac{\mathrm{n} \lambda \mathrm{D}}{\mathrm{d}}$ $\Rightarrow \lambda=\frac{\left(x_{n}\right)_{B} d}{n D}=\frac{1.2 \times 10^{-2} \times 0.28 \times 10^{-3}}{4 \times 1.4}=0.6 \times 10^{-5} \mathrm{~m}=6000 \times 10^{-10} \mathrm{~m}$ ii) Distance of $\mathrm{n}^{\text {th }}$ dark fringe, $\left(\mathrm{x}_{\mathrm{n}}\right)_{\mathrm{D}}=\frac{(2 \mathrm{n}-1) \lambda \mathrm{D}}{2 \mathrm{~d}}$ $\text { Distance of } \begin{aligned} 5^{\text {th }} \text { dark fringe, }\left(\mathrm{x}_{5}\right)_{\mathrm{D}} & =\frac{(2 \times 5-1) \times 6000 \times 10^{-10} \times 1.4}{2 \times 0.28 \times 10^{-3}} \\ & =\frac{9 \times 6000 \times 10^{-10} \times 1.4}{2 \times 0.28 \times 10^{-3}}=13.5 \times 10^{-3} \mathrm{~m} \end{aligned}$ OR If the formula $\left(x_{n}\right)_{D}=\frac{(2 n+1) \lambda D}{2 d}$ is used, then for $5^{\text {th }}$ dark fringe $n=4$	1 1 1 1 1

Note: Any other alternate correct method/answer should be considered.

