GOVERNMENT OF KARNATAKA

KARNATAKA SCHOOL EXAMINATION AND ASSESMENT BOARD II YEAR PUC SUPPLEMENTARY EXAMINATION MAY/JUNE 2023 SCHEME OF EVALUATION.

Subject Code: 35

Subject:Mathematics

Instructions:

- a) Any answer by alternate method should be valued and suitably awarded.
- b) All answers (including extra stuck off and repeated) should be valued. Answers with maximum marks must be considered.

	the state of the s	Marks
Q.No.	PART A	IVIdIKS
4		1
1	c) or writing 2	
		1
2.	a) or $(-\pi/2, \pi/2)$	
3.	b) or writing 2	1
4.	d) or writing $\pm 2\sqrt{2}$	1
5.	a) Or writing -1	1
6.	b) Or writing, e^x Sinx +C	1
7.	d) Or writing 1	1
8.	a) Or writing $\pi-\alpha$, $\pi-\beta$, $\pi-r$	1
9.	c) Or writing Linear function	1
10.	b) Or Not defined	1
	· II	
11.	5	1
12.	1	1
13.	9	1
14.	11	1
15.	1/4	1
16.	A Function $f:X \to Y$ is said to be an injective function if the images of	1
	distict elements of 'X' under 'f' are distinct	
	OR	

	For every, x_1 , $x_2 \in X$ such that $f(x_1) = f(x_2)$ impels $x_1 = x_2$	
7.	Writing $\frac{dy}{dx} = Sec^2$ (2x+3)2 OR writing $f^1(x) = Sec^2$ (2x+3)2.	1
8.	Optimal Solution is any point in the feasible region that gives the	
	ontimal value	
	(Maximum or Minimum) of the objective functions is called optimal	
_	solution	1
19.	$\frac{x^3}{3}$ -X+C	
20	3	
20	Unit vector = $\hat{a} = \frac{2}{\sqrt{14}} \hat{1} + \frac{3}{\sqrt{14}} \hat{1} + \frac{1}{\sqrt{14}} \hat{k}$	1
	PART-B	1
	3	-U
24	Getting fog (x) = $f(g(x)) = f(x^{1/3}) = 8 (x^{1/3})^3 = 8x$	1
21		
	Getting gof(x) = $g(f(x)) = g(8x^3) = (8x^3)^{1/3} = 2x$	1
22	Writing $sin^{-1}\left(\frac{1}{r}\right) = \theta$ and $sin\theta = \frac{1}{r}$ taking reciprocal Cosec θ =x	1
		1
	Writing $\theta = \cos ec^{-1}x$ and $\sin^{-1}\frac{1}{x} = \cos ec^{-1}x$	1
	2 . 2 . 2	1
23	Writing tan^{-1} $\frac{2sin^2 - \frac{1}{2}}{s^2}$	1
	Writing tan^{-1} $\sqrt{\frac{2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}}}$	
	Getting $tan^{-1}(tan^{x}/2) = \frac{x}{2}$	
	Getting tail (tail /2) - 2	1
	x, y, 1 1-2 -3 1	1
	Writing Area $=\frac{1}{2}$ $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ Or Area $=\frac{1}{2}$ $\begin{vmatrix} -2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1 \end{vmatrix}$	
24	$\begin{vmatrix} 2 & x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & -8 & 1 \end{vmatrix}$	
	Getting Area =15	1
		1
25	Getting $a + 2by \frac{dy}{dx} = -\sin y \frac{dy}{dx}$	1
		1
	Getting $\frac{dy}{dx} = \frac{-a}{(2by + siny)}$	
1	Y and log way log (logy)	1
26	Writing $y = (log_e x)^x$ and $log_e y = x$. $log_e (log x)$	

	$dy = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	
	Getting $\frac{dy}{dx} = y \left[\frac{1}{\log_e x} + \log_e (\log_e x) \right]$	
	OR	1
	$\frac{dy}{dx} = (\log_e x)^x \left(\frac{1}{\log_e x} + \log_e (\log_e x)\right)$	
27.		1
27.	$f^1(x) = 0$ and getting $x = \pm 1$	
	Getting local maximum value f(1) =2	1
28.	Getting, $-\frac{1}{2} \int (Cos12x - Cos4x)dx$	# 1
-	Getting - $\frac{1}{24}$ Sin 12x + $\frac{1}{8}$ Sin 4x +c	1
29.	Getting, $\int_0^{\pi/4} tanx \ dx = [\log Secx]_0^{\pi/4}$	1
	Getting, $\log \sqrt{2} - \log 1 = \log \sqrt{2}$	1
30.	Getting $\frac{dy}{dx}$ =m	1
	Getting $\frac{dy}{dx} = \frac{y}{x}$ or $x \frac{dy}{dx} = y$	1
31	Taking $\vec{a} = +\hat{\imath} + 3\hat{\jmath} + 7\hat{k}$ and $\vec{b} = 7\hat{I} - \hat{J} + 8\hat{K}$	
	Getting \vec{a} . \vec{b} =60 and $ \vec{b} $ = $\sqrt{114}$	1
	Getting projection of \vec{a} on $\vec{b} = \frac{60}{\sqrt{114}}$	1
32.	Getting $\vec{a} \times \vec{b} = 5\hat{I} + \hat{J} - 4\hat{k}$	1
	Getting Area the parallelogram = $\sqrt{42}$ squnits	1
33.	Getting $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = -15$ and $ \overrightarrow{n_1} = \sqrt{17}$, $ \overrightarrow{n_2} = \sqrt{43}$ OR writing $\cos \theta = \left \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{ \overrightarrow{n_1} \overrightarrow{n_2} } \right $	1
	$ n_1 n_2 $	

	Getting $\theta = \cos^{-1} \frac{15}{\sqrt{731}}$	1
34	Writing 0.1 + k + 2k + 2k + K = 1	1
	Getting 6k= 0 . 9	1
	And k = 0.15	
	PART -C	
35	Showing Reflexive	1
	Showing Symmetric	1
	Showing transitive	1
36.	Writing $\tan^{-1} 2x + \tan^{-1} 3x = \tan^{-1} \left(\frac{2x + 3x}{1 - 6x^2} \right) = \frac{\pi}{4}$	1
	$Getting \frac{5x}{1-6x^2} = 1$	1
	Getting $x=\frac{1}{6}$ or $x=-1$ Writing $x=\frac{1}{6}$ is the only solution	1
37	Writing $A^{\parallel} = \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix}$	1
	Getting $P = \frac{1}{2}(A + A^1) = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$	1
	Getting, $Q = \frac{1}{2} (A - A^1) = \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$	1
	and getting P + Q = $\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}$ =A	
38	Writing $\frac{dx}{d\theta}$ = a (1-Cos θ)	1
	Writing $\frac{dy}{d\theta} = -a \sin\theta$	1

	Getting $\frac{dy}{dx} = \frac{-a\sin\theta}{a(1-\cos\theta)}$ OR Getting $\frac{dy}{dx} = -\cot\left(\frac{\theta}{2}\right)$	1
39	Writing 'f' is continous in [-4, 2] and 'f' is differntiable in (-4, 2)	1
	Getting $f^{ }(x) = 2x + 2$ Or getting $f(-4) = 0$, $f(2) = 0$	1
	Writing C= -1 ∈ (-4, 2)	1
40	Writing $f^{\dagger}(x) = 2x-4$ OR getting $x = 2$	1
	Writing 'f' is strictly increasing in $(2, \infty)$	1
	Writing 'f' is strictly decreasing in $(-\infty, 2)$	1
41	Writing I = $x \int sec^2 x dx - \int \left[\int sec^2 x dx \cdot \frac{d}{dx} (x) \right] dx$	1
	Getting I = $x tan x - \int tan x dx$	1
	Getting I = xtanx – log secx +c	1
42.	Writing $\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$	1
	Getting A = 1 and B -1	1
	Getting = log x+1 - log x+2 +c	
	OR $I = log \left \frac{x+1}{x+2} \right + c$	1
43	$y = y^2 = 9^2$ OR writing	×
	Area, $A = \int_2^4 3\sqrt{x} dx$	1
	Writing Area, A = 3 ($\frac{2}{3}$) $[x^{3/2}]_2^4$	1
	Getting A = $\frac{8}{3}$ (4 - $\sqrt{2}$) square units	1
X.		

44	Writing $\frac{dy}{1+y^2} = (1+x^2)dx$	1
	Writing $\int \frac{dy}{1+y^2} = \int (1+x^2)dx$	1,
	Getting $tan^{-1}y = x + \underline{x}^3 + c$	1
45	Writing $(a + \lambda b)$. $c = 0$	1
	Getting $[\hat{i}(2-\lambda)+\hat{J}(2+2\lambda)+\hat{k}(3+\lambda)].(3\hat{i}+\hat{J})=0$	1
	Getting $-\lambda + 8 = 0$ and writing $\lambda = 8$	1
46	Getting $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$ or \overrightarrow{a} . $(\overrightarrow{b} \ \overrightarrow{x} \ \overrightarrow{c}) = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix}$	1
	Getting $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$	1
	Writing the given vectors are coplanar	1
47	Writing $\vec{a} = \hat{i} - 2\hat{K}$, and $\vec{N} = \hat{i} + \hat{J} - \hat{K}$	1
	Writing, $1(x-1) + 1(y-0) - 1(z+2) = 0$	1
	Getting $x+y-z-3=0$	1
48	Writing, $P(E_1) = \frac{1}{2}$, $P(E_2) = \frac{1}{2}$, $P(A/E_1) = \frac{3}{7}$, $P(A/E_2) = \frac{5}{11}$	1
	Writing $P(E_2/A) = \frac{P(E_2) P(A/E_2)}{P(E_1) P(A/E_1) + P(E_2) P(A/E_2)}$	1
	Getting P (E_2/A) = $\frac{35}{68}$	1

	PART D	
49	Writing $f(x)=y=4x+3$ and getting $g(y)=\left(\frac{y-3}{4}\right)$	1
	Showing fog $(y) = y$	1.
	Showing $gof(x) = x$	1
	Writing fog = I_y and gof = I_N and concluding 'f' is invertible or f^1 exists.	1
	Getting $f^{-1}(X) = \left(\frac{X-3}{4}\right)$ or writing 'g' is the inverse of 'f'	1
	OR	100
	Proving $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$	1
	Hence f is one – one	1
*	Writing $x = \frac{y-3}{4}$	1
	$\forall y \in Y \text{ there exist } x \in N \text{ such that } f(x) = y \text{ hence } f \text{ is onto}$ OR proving $f(\frac{y-3}{4}) = y$	1
	writing f is invertible and getting $f^{-1}(x) = \frac{x-3}{4}$	1
50	Getting A+B = $\begin{bmatrix} 4 & 1 & -1 \\ 9 & 2 & 7 \end{bmatrix}$	1
	$ \begin{bmatrix} 3 & -1 & 4 \\ -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{bmatrix} $ Getting B-C = $\begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{bmatrix}$	1
	Getting (A+B) - C = $\begin{bmatrix} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{bmatrix}$	1
	Getting A + (B - C) = $\begin{bmatrix} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{bmatrix}$	1
	Writing $(A+B)-C = A + (B-C)$	1
51	Writing $A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$	1
	$\begin{bmatrix} 13 & -1 & -21 & (z) & (3) \end{bmatrix}$	1
	OR Getting $ A = 40 \neq 0$ Note Award a mark, if student directly writes $ A = 40$	
	Getting adj A = $\begin{pmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{pmatrix}$	2
	Note: if any 4 cofactors are correct award 1 mark	

	Writing $x = A^{-1}B = \frac{1}{ A }(adjA) B OR x = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$	1
	Geeting x =1, y=2 and z=-1	1
52	Getting y_1 , = $\frac{2tan^{-1}x}{1+x^2}$	
	Getting $(1+x^2)$ $y_1 = 2\tan^{-1}x$	1
	Getting $(1 + x^2) y_2 + y_1(2x) = 2 \frac{1}{1+x^2}$	2
**	Writing $(1 + x^2) y_2 + 2x(1+x^2)y_1 = 2$	1
53	Writing $\frac{dy}{dt} = 8 \frac{dx}{dt}$	
	ar ar	1
	Getting $6\frac{dy}{dt} = 3x^2 \frac{dx}{dt}$ Getting $3x^2 = 48$ and $x = \pm 4$	1
	Getting the point (4, 11)	_1,
	Getting the point $(-4, \frac{31}{3})$	1,
54	Taking $x = atan \theta$	1
	Writing $I = \int \frac{asec^2\theta}{\sqrt{a^2tan^2\theta} + a^2} d\theta = \int sec\theta d\theta$	1
	$1 = \log x + \sqrt{x^2 + a^2} - \log a + C$	1
	$1 = \log x + \sqrt{x^2 + a^2} + c$	
	$I = \log x + \sqrt{x^2 + a^2} + c$ Writing $\int \frac{1}{x^2 2x + 3} dx \int \frac{1}{(x + 1^2 + \sqrt{2})^2} dx$	1
	Getting $\frac{1}{\sqrt{2}}tan^{-1}(\frac{x+1}{\sqrt{2}})+c$	1
55	2 (O, a) A(a, o)	
	Writing Area A = $4\int_0^q y dx$	1
	Writing Area A = $4\int_0^4 \sqrt{a^2 - x^2} dx$	1
	Getting Area A = $4\left[\frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_0^a$	1
	Getting area = πa^2 square unit.	1
	Note:Units are not compulsory	

56	Writing $\frac{dy}{dx} + \frac{2y}{x} = x \log x$ OR $P = \frac{2}{x}$ and $Q = x \log x$	1
	Getting I.F = $\int \frac{2}{x} dx = e^{2 \log x} = x^2$	1
	Writing y (I.F) = $\int Q(I.F)dx + c$	1
	Writing $y(1.r) - \int Q(1.r) dx + C$	1
	Getting y (x ²) = (logx). $\frac{x^4}{4} - \frac{1}{4} \int x^3 dx$.	1
	Getting general Solution, $yx^2 = \frac{x^4 \log x}{4} - \frac{x^4}{16} + C$	100 1
57	, Z(x, y, Z) B(224232)	
	Getting general Solution, $yx^2 = \frac{x^4 \log x}{4} - \frac{x^4}{16} + C$ $A(x, y, x)$ $B(x_2, y_2, x_2)$ $A(x, y, x_1)$ $B(x_2, y_2, x_2)$	
	Correct Figure: Note Award mark for other correct figure writing wrt co-	
	ordinate axis. Writing \overrightarrow{AP} and \overrightarrow{AB} are collinear and $\overrightarrow{AP} = \lambda \overrightarrow{AB}$	
	Writing AP and AB are continued area 12	
	Getting $\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})$ vector form Writing $\vec{r} = x\hat{\imath} + y\hat{\imath} + z\hat{k}$	
	writing $\vec{a} = x_1 \hat{\imath} + y_1 \hat{\imath} + z_1 \hat{k}$ $\vec{a} = x_1 \hat{\imath} + y_1 \hat{\imath} + z_1 \hat{k}$	
	$\vec{b} = x_1\hat{\imath} + y_1\hat{\imath} + z_1\hat{k}$	
	Getting the Cartesian form	
	$\frac{x - x_1}{x_1} = \frac{y - y_1}{x_1} = \frac{z - z_1}{x_1}$	
	$x_2 - x_1$ $y_2 - y_1$ $z_2 - z_1$	1
58	$n = 6$, $p = \frac{1}{2}$ and $q = \frac{1}{2}$	1
	$n = 6, p = \frac{7}{2} \text{ and } q - \frac{7}{2}$ Writing $P(X = x) = nc_x p^x q^{n-x}$ $P(x = 5) = 6C_5 (\frac{1}{2})^6 = \frac{3}{32}$ $P(x = 5) + P(x = 6) = 6C_5 (\frac{1}{2})^6 + 6C_6 (\frac{1}{2})^6$ Getting $P(x = 5) + P(x = 6) = \frac{7}{64}$	1
	$P(x = 5) = 6C_5 (\frac{7}{2}) = \frac{32}{32}$	1
	$P(x = 5) + P(x = 6) = 6C_5 (\frac{1}{2})^3 + 6C_6 (\frac{1}{2})^3$	1
	Getting $P(x = 5) + P(x = 6) = \frac{7}{64}$	•

59	16 40(015)	2+1=3
	16 (c(0,15).	
	7 1/13	
	12	
	10 - 10	
	8 - \0'.	
	6 A(0,5)\ 3)	
	4 ELH x+24 = 10.	and the same of
	$4 - \sum_{x \neq 2} E(4)^{3} + 2y = 10.$ $2 - \sum_{x \neq 2} B(10,0).$	
	O(0) 2 4 6 8 10 12 9/24=10	4
	Drawing the graph of 2 lines carries 2 mark and shading the	
	feasible region carries 1 mark	
	Getting corner points A (0,5) D(5,0) E (4,3) and O(0,0)	1
		1
	Corners Points $z = 3x + 2y$ A (0.5) 10	
	A (0,5) 10 D (5,0) 15	
	E (4, 3) 18	
	O(0,0) 0	
	The maximum value of z is 18 at the corner point E (4,3)	1
	OR	
	$I = \int_0^a f(x) dx$	1
	Putting $x = a$ -t the $dx = -dt$ and $x = 0$ then $t = a$	
	and $x = a$ then $t = 0$	1
	Getting I = $-\int_a^0 f(a-t)dt$	1
		1
	Getting I = $\int_0^a f(a-x) dx$	1
	Writing I = $\int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$ and Getting I = $\int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} dx$	1
	Getting $2I = \int_0^q 1 dx$	1
	Getting $I = a/2$	1
60	Writing $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = f(2)$	1
	$x \rightarrow 2^- \mathbf{X} \rightarrow 2^+$	
	Getting $\lim_{x \to 2^{-}} f(x) = 4 k$	1
		1
\ TI	Getting $\lim_{x \to 2^+} f(x) = 3$	
	Getting $k = \frac{3}{4}$	1

OR	d'	1
Applying $C_1 - C_2$ and $C_2 - C_3$ and getting $\begin{vmatrix} 4 - x & 0 & 2x \\ x - 4 & 4 - x & 2x \\ 0 & x - 4 & x + 4 \end{vmatrix}$		2
Getting $= (4 - x)^{2} \begin{vmatrix} 1 & 0 & 2x \\ -1 & 1 & 2x \\ 0 & -1 & x + 4 \end{vmatrix}$		1
On expansion getting $= (4-x)^2 (5x+4)$		₃ 1