GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD II YEAR PUC SUPPLEMENTARY EXAMINATION - 2 AUGUST / SEPTEMBER - 2023 SCHEME OF EVALUATION

SUBJECT : MATHEMATICS

SUBJECT CODE : 35

INSTRUCTIONS:

a) Any answer by alternate method should be valued and suitably awarded.

b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Q. No				PART - A	Marks
				Ι	
1	b)	or	writing	16	1
2	c)	or	writing	5π/6	1
3	d)	or	writing	512	1
4	a)	or	writing	$\pm\sqrt{3}$	1
5	b)	or	writing	2x	1
6	b)	or	writing	$e^x secx + C$	1
7	a)	or	writing	-7 î and 6ĵ	1
8	b)	or	writing	6x + 4y + 3z = 12	1
9	b)	or	writing	3a = b	1
10	a)	or	writing	0.32	1
II					
11	-2				1
12	24				1
13	3				1
14	$\frac{3}{13}$				1
15	0.12				1

111			
16	On the set A = { 1, 2, 3 }, R = { (1, 2), (2, 1) }	1	
	OR		
	Any other Suitable example		
17	$\frac{dy}{dx} = \frac{-2x \operatorname{cosec}^2(x^2)}{\sqrt{2}}$	1	
	$dx \qquad \sqrt{(cotx^2)}$		
18	I = Log 3 – log 2 or $\log \frac{3}{2}$	1	
19	$\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$	1	
20	The common region determined by all the constraints including non-	1	
	negative constraints of a LPP.		
	PART - B		
	Getting $a * (b * c) = a * (\frac{bc}{4}) = \frac{abc}{16}$	1	
21	Getting $(a * b) * c = (\frac{ab}{b}) * c = \frac{abc}{b}$	1	
	4 16	Ĩ	
	$\left(\begin{array}{c} \frac{1}{2} + \frac{2}{11} \end{array}\right)$		
22	Writing $\tan^{-1} 1/2 + \tan^{-1} 2/11 = \tan^{-1} \left\{ \frac{1}{1 - \frac{1}{11}} \right\}$	1	
	Getting RHS = $\tan^{-1} 3/4$	1	
	Writing $\sin^{-1} x = \theta$ OR $x = \sin \theta$ and $x = \cos(\frac{\pi}{2} - \theta)$	1	
23	Wirting $\cos^{-1} x = (\frac{\pi}{2} - \theta)$ and getting $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$	1	
	Writing area = $\frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \end{vmatrix}$		
24		1	
	Getting y = 2x	1	
25	Getting $a + 2$ by. $\frac{dy}{dx} = siny \frac{dy}{dx}$	1	
	Getting $\frac{dy}{dx} = -\frac{a}{2by+siny}$	1	
26	Writing $log y = x log (log x)$	1	
	Getting $\frac{dy}{dx} = y \left\{ \frac{1}{\log x} + \log(\log x) \right\}$	1	

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1
1 1 1 1
1

PART - C			
35	ProvingR is not reflexiveProvingR is not symmetricProvingR is not Transitive	1 1 1	
36	WritingX = sec θ and θ = sec ⁻¹ xWritingY = tan ⁻¹ $\frac{1}{\sqrt{x^2-1}}$ = tan ⁻¹ $\frac{1}{tan\theta}$ GettingY = tan ⁻¹ tan $(\frac{\pi}{2} - \theta)$ GettingY = $\frac{\pi}{-}$ - sec ⁻¹ x	1 1 1	
37	Getting $A+A' = \begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix}$ Getting $A-A' = \begin{bmatrix} 0 & 6 \\ -6 & 0 \end{bmatrix}$	1	
	Writing $A = \frac{1}{2} (A + A') + \frac{1}{2} (A - A')$	1	
38	Getting $\frac{dx}{d\theta} = a (1 - \cos\theta)$	1	
	Getting $\frac{dy}{d\theta} = -a \sin \theta$	1	
	Getting $\frac{dy}{dx} = -\frac{\sin \theta}{1-\cos \theta}$ or $\frac{dy}{dx} = -\cot \left(\frac{\theta}{2}\right)$	1	
39	Writingf(x) is continuous in [2,4] and differentiable in (2,4)Writing $f^1(x) = 2x \text{ or } f(2) = 4$ and $f(4) = 16$ Writing $f^1(c) = \frac{f(4) - f(2)}{4 - 2}$ andGetting $C = 3 \in (2,4)$	1 1 1	
40	Writing $f^1(x) = 2x + 2$ or getting $x = -1$ Writing $f(x)$ is strictly increasing in $(-1, \infty)$ Writing $f(x)$ is strictly decreasing in $(-\infty, -1)$	1 1 1	
41	Writing I = $\int \frac{(1-2sin^2x)+2sin^2x}{cos^2x} dx$ Writing I = $\int sec^2 dx$ Writing I = tanx + c	1 1 1	
42	Writing $\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)} + \frac{B}{(x-2)}$ Getting A = -1 and B = 2 Getting I = - log $ x - 1 + 2 \log x - 2 + C$	1 1 1	
43	Figure		

	Or Writing area A = 2 $\int_0^3 y dx$ or area A = 2 $\int_0^3 2 \sqrt{x} dx$ Getting area A = $8\sqrt{3}$ so Units	1 2	
		-	
	Writing $\frac{xy}{1+y^2} = (1+x^2) dx$	T	
44	Writing $\int \frac{dy}{1+y^2} = \int (1+x^2) dx$	1	
	Writing $\tan^{-1} y = x + \frac{x^3}{3} + c$	1	
	Figure		
	A m P n B		
		1	
		L	
45			
	0		
	Writing $m \overline{PR} = n \overline{AP}$	1	
	Cotting $\overrightarrow{OP} = m\vec{b} + n\vec{a}$	1	
	Getting $OF = \frac{m+n}{m+n}$	1	
	Writing $AB = -4l - 6J - 2K$, $AC = -l + 4J + 3K$, $AD = -8l - J + 3K$ -4 - 6 - 2	1	
46	Writing $[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}] = \begin{bmatrix} -1 & 4 & 3 \\ 0 & 1 & 2 \end{bmatrix}$	1	
40	Getting $\begin{bmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD} \end{bmatrix} = 0$ and writing the given points are coplanar.		
47	Writing $(3x - y + 2z - 4) + \mu (x + y + z - 2) = 0$	1	
47	Getting $\mu = -\frac{3}{3}$	1	
	Getting the equation of the plane : $/x - 5y + 4z - 8 = 0$ Writing $P(E_1) = 1/3 = P(E_2) = P(E_3)$		
	Or		
	Writing $P(A/E_1) = 1$ $P(A/E_2) = 0$ $P(A/E_3) = \frac{1}{2}$	1	
48	Writing $P(E_1/A) = \frac{P(E_1)P(A/E_1)}{(A)}$	1	
	$P(E_1) P(\frac{A}{E_1}) + P(E_2) P(A/E_2) + P(E_3) P(A/E_3)$ Cotting Appwor - 2/2	1	
	Getting Allswei – 2/3	L	
PART D			
49	Writing $f(x) = y = x^2+4$ and getting $x = g(y) = \sqrt{y-4}$	1	
	Showing $(g.f)(x) = x$ Writing $(f.g)(y) = y$	1	
	Writing $(f.g) = I [_{4, \infty})$ and $(g.f) = I R^+$	1	
	writing f is invertible and $f^{-1}(x) = \sqrt{x-4}$	1	
	or	_	
	Proving t is one – one Proving f is on to and f is invertible and $f^{-1}(x) = \sqrt{x - 4}$	2	

50	Getting $A + B = \begin{pmatrix} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 3 \end{pmatrix}$	1
	Getting B-C = $\begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & -2 & 0 \end{bmatrix}$	1
	Getting A + (B - C) = $ \begin{bmatrix} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{bmatrix} $	1
	Writing $(A+B) - C = \begin{pmatrix} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{pmatrix}$	1
	Writing A + (B-C)= (A+B) -C	1
	Writing $A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix},$	1
	Or Getting $ A = 40 \neq 0$	
51	Note : award a mark if student directly writes $ A = 40$	2
	Getting $adjA = \begin{bmatrix} 5 & 5 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$	
	Note : If any 4 co-factors award 1 mark	1
	Writing $X = A^{-1}B = \frac{1}{ A } (adjA) B$ or $X = \frac{1}{40} \begin{bmatrix} 5 & 5 & 5 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} -3 \\ -4 \\ -3 \end{bmatrix}$	1
	x = 1 y = 2 z = -1	1
	Getting $y_1 = -3 \sin(\log x) 1/x + 4 \cos(\log x) 1/x$	1
52	Getting $xy_1 = -3 \sin(\log x) + 4 \cos(\log x)$ Getting $xy_2 + y_1 = -3 \cos(\log x) 1/x - 4 \sin(\log x) 1/x$	1
	Writing $x^2y_2 + xy_1 = -3 \cos(\log x)4 \sin(\log x)$	1
	Getting $x^2y_2 + xy_1 + y = 0$	1
53	Writing $\frac{dt}{dt} = -3 \text{ cm} / \text{min}$, $\frac{dy}{dt} = 4 \text{ cm} / \text{min}$ Writing P = 2 (x+y)	1 1
	Writing $\frac{dp}{dt} = 2\left[\frac{dx}{dt} + \frac{dy}{dt}\right]$ and $\frac{dp}{dt} = -2$ cm / min	1
	Writing A = xv	1
	Writing $\frac{dA}{dt} = x \frac{dy}{dt} + y \frac{dx}{dt}$ and $\frac{dA}{dt} = 2$ sq.cm/min	1
54	Taking $x = a \tan \theta$ and $\theta = \tan^{-1}\left(\frac{x}{a}\right)$	1
	Getting $I = \frac{1}{2} \int 1 d \theta$	1
	Getting $\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + c$	1
	Writing $l = \int \frac{1}{(x+1)^{2+1}}$	1

	Writing \vec{AP} is Parallel to \vec{b} or $\vec{AP} = \lambda \vec{b}$	1
	Getting $\vec{r} = u + \lambda \vec{D}$ vector form	
	writing $\Gamma = xt + yj + 2k$	1
	$a = x_1 l + y_1 J + z_1 k$	
	$b = a\hat{i} + b\hat{j} + ck$	
	Getting the Cartesian form	1
	$\frac{x + x_1}{a} = \frac{y + y_1}{b} = \frac{z + z_1}{c}$	T
	Writing $n = 6$, $P = \frac{1}{2}$, $q = 1 - \frac{1}{2} = \frac{1}{2}$ Writing $P(X) = nC_x P^x q^{n-x}$ Writing $P(X = 5) = 6C_5(1/2)^6 = \frac{3}{22}$	1 1
58	Writing $P(X \ge 5) = P(X = 5) + P(X = 6)$ and	1
	Getting P (X \ge 5) = $\frac{1}{32}$ + = $6C_6(1/2)^\circ$ = $\frac{3}{3} + \frac{1}{2} = \frac{7}{2}$	1
	Getting P (X ≤ 5) = 1 - P (x = 6) = 1 - $\frac{1}{64} = \frac{63}{64}$	1
59	$ \begin{array}{c} $	2+1
	Drawing the graphs of 2 lines carries 2 marks and shading the feasible region carries 1 marks	
	Getting corner points : (0,0) (5,0) (0,5) (4,3)	1
	Corner Points $Z = 3x + 2y$ (0,0)0(5,0)15(0,5)10(4,3)18	1

	The Maximum value `of Z is 18 at the corner point (4, 3)	1
	OR	
	$\int_{a}^{a} f(x) dx = \int_{a}^{0} f(x) dx = \int_{a}^{a} f(x) dx$	
	Writing $I = \int_{-a}^{a} f(x) dx = \int_{-a}^{a} f(x) dx + \int_{0}^{a} f(x) dx$	1
	Put $x = -t$ in the first integral on RHS	
	dx = -dt and $x = -a$, $=> t = a$	1
	x = 0 , $=> t = 0$	
	Writing $\int_{-a}^{a} f(x)dx = \int_{-a}^{a} f(-x)dx + \int_{0}^{a} f(x)dx$	1
	Getting $f(x)$ is even, $\int_{-a} f(x) dx = 2 \int_{0}^{a} f(x) dx$	1
	$f(x)$ is odd $\int_{a}^{a} f(x) dx = 0$	1
	$f(x)$ is odd, $\int_{-a}^{a} f(x) dx = 0$	T
	$-\frac{\pi}{2}$	1
	Getting $\int_{-\frac{\pi}{2}}^{2} \frac{\pi}{x} \sin^{7} x dx = 0$ (because it is an odd function)	T
	2	
	Writing $\lim_{x \to 2} f(x) = f(2)$ or RHL = LHL = $f(2)$	1
	Getting LHL = $\lim_{x \to 2} = ((Kx^2) = 4k)$	1
	Getting RHL = $\lim_{x \to 2} 3$	1
	Getting $4k = 3$ and $K = \frac{3}{4}$	1
	or 4	
	y+k y y	
	$\Delta = \begin{bmatrix} y & y+k & y \end{bmatrix}$	
	y y y + k	
	Apply: $C_1 - > C_1 + : C_2 + : C_3$	
60	$\begin{vmatrix} 3y+k & y & y \\ 3y+k & y+k & y \end{vmatrix}$	4
	$\Delta = \begin{vmatrix} 3y + k & y + k \\ 3y + k & y \\ y + k \end{vmatrix}$	1
	$A = (2y+y) \begin{bmatrix} 1 & y & y \\ 1 & y+k & y \end{bmatrix}$	1
	$\Delta = (3y+x) \begin{bmatrix} 1 & y+k & y \\ 1 & y & y+k \end{bmatrix}$	T
	Apply $R_2> R_2 - R_1$ and $R_3> R_3 - R_1$	
	1 y y	1
	$\Delta = \begin{bmatrix} 0 & k & 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 \end{bmatrix} k$	
	Getting $\Delta = (3y+k) k^2$	1